
Probability, Fall 2020 Preamble 3: The Natural Exponential Function

Introduction

Get one percent better every day, and you’ll be thirty-seven times
better at the end of the year.—(Source unknown)

I couldn’t find the source of this quote. The assertion is that improving just
incrementally every day can lead to large gains, because the gains accumulate.

Here is the math: if G is how good you are on a particular day, then adding one
percent to G is the same as multiplying G by 1.01:

G + (0.01)G = 1G + (0.01)G = G
(
1 + 0.01

)
= G(1.01).

So, if G0 is how good you are on day zero, then to add one percent for 365 days,
we multiply by 1.01, a total of 365 times:

G365 = G0

(
1 + 0.01

)365
= G0(1.01)365,

and

(1.01)365
.
= 37.783;

you have improved by 3678%!
(Of course, in most parts of life, no amount of training will allow you to im-

prove that much: there is no way you can run 37 times faster than you do now.
Practically, even a one percent improvement is not sustainable over time. But
the assertion—that a small percentage growth will accumulate dramatically over
time—is solid.)

Exercise 1: Suppose you could sustain a one percent improvement per week, for
one year. Find how much you would improve by the end of the year. (Use a calcu-
lator or calculator app.)

In this third “preamble” assignment, I will talk about exponential growth and
decay. This involves exponential functions, y = ax. In particular, when the growth
is continuous, we get the natural exponential function, y = ex. I will explain how
this all works, and explain some properties of natural exponential function.

I will not try to explain how this function is useful in probability; I’ll leave that
for when the class starts.

Even if the natural exponential function is familiar to you, I will discuss some
properties we will need that you may not have seen, so I would recommend looking
through this assignment, even if the topic seems well-known to you. If the topic
is not familiar to you, please study this assignment carefully; we will be using the
natural exponential function a lot.

Simple interest

A standard way of explaining exponential functions is by way of earning interest
on money. This goes back to Jacob Bernoulli in 1683. I will follow this procedure,
and talk about earning interest on money in the next couple of sections. We will
not be using interest in any of our applications, but it seems to be the simplest way
of explaining the idea.

Let’s start first with simple interest. This means that you have an investment,
and you earn interest only on the initial investment, not on the interest.
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For example, if you invest $1000, and you earn 10% per time period (say one
year), then you will earn $100 per time period. It will take you 10 time periods to
double your investment:

$1000 +

(
1

10

)
$1000 +

(
1

10

)
$1000 + . . .

(
1

10

)
$1000︸ ︷︷ ︸

ten times

= $2000

If you earned 25% simple interest, it would take you 4 time periods to double your
money. If you earned 1% simple interest, it would take you 100 time periods to
double your money.

In general, if you initially invest P0 dollars, and you earn 1/n of your money in
interest per time period, then it will take you n time periods to double your money:

Pn = P0 +

(
1

n

)
P0 +

(
1

n

)
P0 + . . . +

(
1

n

)
P0

= P0 + n

(
1

n

)
P0

= P0

(
1 + n

(
1

n

))
= 2P0

Discrete Compound Interest

If the interest is paid to you as you earn it, and then you earn interest on the
interest, this will earn more money. This is called compound interest.

This is similar to the example that I discussed in the introduction. Suppose you
make an initial investment of $1000, and that you earn 1% interest per month. If
you earn interest on your interest, then your total amount of money will increase
by 1% each month; your increases will accumulate. Adding 1% to your money is
the same as multiplying your balance by 1.01:

$1000 + $1000(0.01) = $1000(1) + $1000(0.01) = $1000
(
1 + 0.01

)
.

So if you earn interest for t months, then your final balance P after t months will
be1

P = ($1000)(1.01)t.

This is called an exponential function (because the variable t is in the exponent).

Exercise 2: Suppose we invest an initial amount P0,2 and we earn an interest rate
x per time period (where x is written as a decimal; for example, 1% would mean
x = 0.01). Find the formula for the amount P of money we would have after t time
periods.

Exercise 3: Suppose that we instead have an initial investment P0 that loses
value at a rate of x per time period. Find the formula for its value P after t time
periods.

1For some reason, the amount of money you have is called your “principal” in finance, so the
letter P is traditional here.

2It is common in math to denote an initial value with a subscript 0, meaning the value at time
zero.
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Comparing Different Compounding Periods

In this section, I want to fix the total time of the investment, and compare the
effects of compounding a different number of times, during that fixed total time.

For simplicity, let’s take our time period to be the time it would take you to
double your money with simple interest. For concreteness, you can imagine that
you are earning (somehow!) 100% interest for one year.

With simple interest, it doesn’t matter how many payments are made. You
could get one payment equal to your investment, at the end of one year; you could
get two payments of 50%, or 1/2, your investment, twice (every six months); you
could get a payment of 1/12 of your investment each month. In all these cases,
your initial investment would be multiplied by 2 after one year.

However, if the interest is compounded, then it matters how often the interest
is paid.

If the interest is paid in two payments of 50%, or 1/2, your money, one payment
at 6 months and one after 12 months, then you will also earn money on your interest.
Say you start with $1000 dollars; at the end of six months, you will have

$1000 + (0.50)$1000 = $1500.

Then at the end of twelve months, you will have

$1500 + (0.50)$1500 = $2250.

Your money has more than doubled in a year, because you have earned 50% interest
for six months on the 500 interest from the first six months.

Note as before that adding 50% to your total is the same as multiplying your
total by 1.50:

$1000 + (0.50)$1000 = $1000
(
1 + 0.50

)
.

So, adding 50% again is the same as multiplying by 1.50 again: the total amount
you have after twelve months is

$1000
(
1 + 0.50

)(
1 + 0.50

)
= $2250,

because you have added 50% twice. If you start with P0 dollars, at the end of the
year you will have

P1 = P0

(
1 + 0.50

)2
= (2.25)P0

dollars.
Let’s say instead that you are paid 25%, or 1/4 your total, four times during the

year. Adding 25% is the same multiplying by 1.25, or by 1 + 1/4:

P0 + (0.25)P0 = P0 +

(
1

4

)
P0 = P0

(
1 +

1

4

)
.

So adding 25% four times (compounding the interest) is the same as multiplying
by 1.25 four times over: your final balance will be

P1 = P0

(
1 +

1

4

)(
1 +

1

4

)(
1 +

1

4

)(
1 +

1

4

)
= P0

(
1 +

1

4

)4

= (2.44140625)P0

You have earned even more, because you are earning interest on the interest for
longer.

Let’s say instead that you are paid the interest monthly. Since your interest
rate was 100%, this means that you are paid 1/12 of your balance, twelve times
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during the year. Each time you earn 1/12 interest, your balance is multiplied by
(1 + 1/12). So after a year, your final balance will be

P1 = P0

(
1 +

1

12

)
· · ·
(

1 +
1

12

)
︸ ︷︷ ︸

12 times

= P0

(
1 +

1

12

)12
.
= (2.61303529)P0.

If your interest was added daily, your balance would be multiplied by (1+1/365),
once each day, for 365 days, and your final balance would be

P1 = P0

(
1 +

1

365

)365
.
= (2.71456748)P0.

If your interest was added every hour, your balance would be multiplied by
(1 + 1/8760) every hour, for all 8760 hours of the year, for a final balance of

P1 = P0

(
1 +

1

8760

)8760
.
= (2.71812669)P0.

If your interest was added every second, your balance would be multiplied by
(1 + 1/31, 536, 000) every second, for all 31, 536, 000 seconds of the year, for a final
balance of

P1 = P0

(
1 +

1

31, 536, 000

)31,536,000
.
= (2.71828178)P0.

Continuously Compounded Interest and Organic Growth

If we continue imagining this process, we will add an interest of 1/n to our
balance at each step, by multiplying the balance by (1 + 1/n). We will do so n
times, for a final balance of

P1 = P0

(
1 +

1

n

)n

.

As we let the value of n increase larger and larger, (compounding more and more
often), our final balance reaches a limiting value:3

P1 = P0 lim
n→∞

(
1 +

1

n

)n
.
= 2.718 281 828 459 045 235 360 287 471 352 662 497 757 247 093 699 95 . . .

We think of this limit as continuous compounding : the interest is trickling into
the account continuously, and interest is continuously being earned on the added
interest.

In the same time that simple interest would cause the investment to be doubled,
continuous compound interest multiplies the investment by about

2.718 281 828 . . .

This number is called e.
This setup is also important for many examples of organic growth. For example,

a cell culture, or an organism like a tree, might be modeled as growing at a con-
stant percentage rate. The new growth also grows (like compound interest), and

3The symbol “limn→∞” means to find the number that the expression gets closer and closer

to, as you take the value of n larger and larger. But you might be worried: do we know there
really is such a number? For a more complete explanation, you will have to take Calculus and
Analysis! But for the purposes of this course, just the rough idea I’ve said above is sufficient.
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the growth does not happen at sudden discrete intervals, but continuously (like
continuous compounding). The new growth is added continuously, and contributes
to the growth as it is added.4

Continuous Growth With Other Rates

In the example above, I assumed 100% interest rate per year, for one year. Of
course, this is unrealistic. Let’s say that the interest rate has a different value, and
see how that is calculated.

To start, let’s assume that the interest rate is 10% per year, and let’s assume we
are investing for one year.

If we earn simple interest, then our investment simply grows by 10% total in one
year.

Suppose now we earn discretely compounded interest. If the interest is paid,
and compounded, a total of n times per year, then at each payment we will earn
(0.10)/n of our balance in interest. That is, at each interest payment, our balance
will be multiplied by (

1 +
0.10

n

)
.

We will earn this interest a total of n times in the year, so the initial balance will
be multiplied by this factor n times over. That is, at the end of the year, our final
balance will be

P1 = P0

(
1 +

0.10

n

)n

.

For example, if the interest is compounded monthly, then at the end of the year
our balance will be multiplied by(

1 +
0.10

12

)12
.
= 1.104713,

or an effective rate of 10.4713%.
If the interest is compounded continuously, then at the end of the year our

balance will be

P1 = P0 lim
n→∞

(
1 +

0.10

n

)n
.
= (1.105170918)P0,

or an effective rate of 10.5170918%.
We can actually do this computation in terms of the number e. Let’s do it for

any interest rate, not just for 10%.
Suppose our interest rate is x per year (expressed as a decimal). Suppose that

the interest is compounded n times a year. Each time we add interest, we multiply
our balance by (

1 +
x

n

)
.

After the end of one year, we have added interest n times, so we have multiplied
by this factor n times. So, at the end of the year, the balance is

P1 = P0

(
1 +

x

n

)n
.

4Of course, a cell culture or a tree is made up of a discrete set of cells, which do reproduce in
discrete steps; but the number of cells is so enormous, that continuous growth is a simpler and
more accurate mathematical model than discrete growth.
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If we now continuously compound, then after one year the balance is

P1 = P0 lim
n→∞

(
1 +

x

n

)n
.

How can we calculate this number? Here is a trick: define a new variable m, by

m =
n

x
.

Then we have that
1

m
=

x

n
, and n = mx.

(Check my algebra!)
Also, when n gets really large, so does m. Substituting these into our expression

above, we find that

lim
n→∞

(
1 +

x

n

)n
= lim

m→∞

(
1 +

1

m

)mx

.

(Again, check my algebra!)
Now, we can additionally use a trick of applying an exponent rule, that abc =

(ab)c, so we get:

lim
n→∞

(
1 +

x

n

)n
= lim

m→∞

(
1 +

1

m

)mx

=

(
lim

m→∞

(
1 +

1

m

)m)x

.

Now, check out the bracket in the last step:(
lim

m→∞

(
1 +

1

m

)m)
= e.

So we finally get

P1 = P0 lim
n→∞

(
1 +

x

n

)n
= P0 lim

m→∞

(
1 +

1

m

)mx

= P0

(
lim

m→∞

(
1 +

1

m

)m)x

= P0e
x.

Summarizing:

lim
n→∞

(
1 +

x

n

)n
= ex

Exercise 4: This isn’t exactly an exercise, but I strongly suggest that you mem-
orize the formula in the box above. It is going to come back several times later. It
would also be valuable to remember how it was derived, if you are feeling ambitious.

For our practical compound interest example, we have showed the following:

If you invest P0 dollars, and earn an interest of x per year (expressed as a decimal),
compounded continuously, then at the end of the year, your balance will be

P1 = P0e
x.

For example, if the interest rate is 10% per year, then after one year of continuous
compounding, the balance is multiplied by the factor

e0.10
.
= 1.105170918,

or an effective rate of 10.5170918%, the same answer as we got before.5

5You can calculate this with the ex button on your calculator or calculator app.
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Exercise 5: Suppose that we have an initial investment (or other quantity) P0,
that loses value at a rate of x per year, compounded continuously. Repeat the
whole derivation given above for this case. Your final result should be a formula
for P1, the amount remaining after one year. (Your formula should look similar to
P1 = P0e

x, with a small change. You might be able to guess it, but I still suggest
going through the whole derivation to figure it out for certain. This will also give
you practice understanding the derivation of the formula, which we will need again.)

Continous Growth for Other Total Time Periods

So far, I have been assuming continuous compounding for a fixed total period
of one year. (I changed the time period that we were adding and compounding
interest, which changed the number of times interest was added during the one
year. I eventually let the number of compounding periods become infinitely big.
But I still kept the total time period as one year.)

Let’s suppose we had a different time interval. For example, let’s say that we
had 10% interest, compounded n times a year, but that we invested for 5 years.
Then each addition of interest would multiply the balance by(

1 +
0.10

n

)
as before. However, we would add the interest n times a year for 5 years, for a total
of 5n times. So after 5 years, our balance would be

P5 = P0

(
1 +

0.10

n

)5n

.

If we take the limit of continuous compounding, we would multiply our original
investment by

P5 = P0 lim
n→∞

(
1 +

0.10

n

)5n
.
= 1.6487,

or an increase of about 64.87% (compare simple interest which would increase the
investment by 50%).

More generally, if we have an interest rate of x per year (expressed as a decimal),
we are compounding n times a year, and we invest for t years, then after t years,
our balance will be

Pt = P0

(
1 +

x

n

)nt
.

If we are compounding continuously, we take the limiting value as n gets large. To
write this in terms of e, we can make a substitution m = nx like before:

Pt = P0 lim
n→∞

(
1 +

x

n

)nt
= P0 lim

m→∞

(
1 +

1

m

)mxt

= P0

(
lim

m→∞

(
1 +

1

m

)m)xt

= P0e
xt.

Summarizing:

lim
n→∞

(
1 +

x

n

)nt
= ext

For our practical example:
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If you invest P0 dollars, and earn an interest of x per year (expressed as a decimal),
compounded continuously, then at the end of t years, your balance will be

Pt = P0e
xt.

Said more generally:

If a quantity has an initial value of P0, and grows continuously at a rate x per time
period (expressed as a decimal), then at the end of t time periods, the quantity will
be

Pt = P0e
xt.

Exercise 6: As in the last exercise, find the formula for the case where the quantity
decreases continuously at a rate of x per time period. You can probably guess it by
now, but go through the whole derivation to be sure. (We will use the derivation
again later, not just the result.)

Exercise 7: Suppose that you invest an initial amount of $1000, that you earn
10% interest per year, and that you invest for 5 years total. Compare your total
balance, at the end of five years, in the case where:
(a) your interest is simple (not compounded)
(b) your interest is added and compounded yearly
(c) your interest is added and compounded monthly
(d) your interest is added and compounded continuously.
(Use a calculator or calculator app to do the computations.)

The Natural Logarithm

Sometimes it is necessary to solve an equation involving an exponential func-
tion. For this, we often need a way to invert the exponential function: this is the
logarithm.

Here is the rule which defines a logarithm to any base:6

for any x, loga (ax) = x and aloga x = x.

We will only ever need logarithms for the natural exponential function, where
a = e. In this case, the logarithm has a special symbol: loge y is written ln y. That
is:

for any x, ln (ex) = x and eln x = x.

Here is an example of how it is used. Suppose that we have an initial investment
of $1000, earning 100% interest per year, compounded continuously. By what we
figured out above, after t years, our balance would be

Pt = ($1000)et.

Now, suppose we want to know how long our money will take to double. That is,
we want to find the time t such that Pt = $2000. We therefore need to solve

$2000 = ($1000)et, that is, et = 2

6There are many other ways of thinking of logarithms, and many other sorts of applications
for them. In this class, we will only be using them as inverses of exponential functions, so that’s
the explanation I use here.
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for the unknown time t. Apply ln to both sides of the equation:

ln
(
et
)

= ln(2)

and apply the rule, ln
(
e“whatever”

)
= “whatever”, to get ln (et) = t, so

t = ln(2)
.
= 0.693.

Therefore it takes about 0.693 years, or about 8.3 months, for the money to double.
(You can use a calculator or calculator app to find ln(2).)

Exercise 8: Suppose that we invest $1000, and that we earn 5% interest per year,
compounded continuously. How long will it take for our balance to reach $3000?
(Note that you can check your answer by substituting it back into your beginning
formula.)

Conclusion

I have used the examples of growth and decay, particularly compound interest,
to explain the natural exponential function. That is not exactly how we will use it
in probability, but I think it is still the simplest way to explain the function if you
are not familiar with it.

If you are familiar with the natural exponential function, then much of this
assignment may have been review for you. I think the thing that was most likely
to be new was the infinite product formula:

lim
n→∞

(
1 +

x

n

)n
= ex

and also the version you worked out for decay instead of growth:

lim
n→∞

(
1 − x

n

)n
= e−x

This formula will be particularly important for us. Be sure to remember it, and
ideally understand where it comes from.

In Preamble Assignment #4, I will explain how to combine these formulas with
the binomial theorem that I talked about in Preamble Assignment #2.


