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THE MARKOV CHAIN MONTE CARLO REVOLUTION

PERSI DIACONIS

Abstract. The use of simulation for high-dimensional intractable computa-
tions has revolutionized applied mathematics. Designing, improving and un-
derstanding the new tools leads to (and leans on) fascinating mathematics,
from representation theory through micro-local analysis.

1. Introduction

Many basic scientific problems are now routinely solved by simulation: a fancy
random walk is performed on the system of interest. Averages computed from the
walk give useful answers to formerly intractable problems. Here is an example
drawn from course work of Stanford students Marc Coram and Phil Beineke.

Example 1 (Cryptography). Stanford’s Statistics Department has a drop-in con-
sulting service. One day, a psychologist from the state prison system showed up
with a collection of coded messages. Figure 1 shows part of a typical example.

Figure 1:

The problem was to decode these messages. Marc guessed that the code was a
simple substitution cipher, each symbol standing for a letter, number, punctuation
mark or space. Thus, there is an unknown function f

f : {code space} −→ {usual alphabet}.
One standard approach to decrypting is to use the statistics of written English to
guess at probable choices for f , try these out, and see if the decrypted messages
make sense.
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To get the statistics, Marc downloaded a standard text (e.g., War and Peace)
and recorded the first-order transitions: the proportion of consecutive text symbols
from x to y. This gives a matrix M(x, y) of transitions. One may then associate a
plausibility to f via

Pl(f) =
∏

i

M (f(si), f(si+1)) ,

where si runs over consecutive symbols in the coded message. Functions f which
have high values of Pl(f) are good candidates for decryption. Maximizing f ’s were
searched for by running the following Markov chain Monte Carlo algorithm:

• Start with a preliminary guess, say f .
• Compute Pl(f).
• Change to f∗ by making a random transposition of the values f assigns to

two symbols.
• Compute Pl(f∗); if this is larger than Pl(f), accept f∗.
• If not, flip a Pl(f∗)/Pl(f) coin; if it comes up heads, accept f∗.
• If the coin toss comes up tails, stay at f .

The algorithm continues, trying to improve the current f by making random trans-
positions. The coin tosses allow it to go to less plausible f ’s, and keep it from
getting stuck in local maxima.

Of course, the space of f ’s is huge (40! or so). Why should this Metropolis
random walk succeed? To investigate this, Marc tried the algorithm out on a
problem to which he knew the answer. Figure 2 shows a well-known section of
Shakespeare’s Hamlet.

Figure 2:

The text was scrambled at random and the Monte Carlo algorithm was run.
Figure 3 shows sample output.

Figure 3:
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After 100 steps, the message is a mess. After two thousand steps, the decrypted
message makes sense. It stays essentially the same as further steps are tried. I find
it remarkable that a few thousand steps of this simple optimization procedure work
so well. Over the past few years, friends in math and computer science courses
have designed homework problems around this example [17]. Students are usually
able to successfully decrypt messages from fairly short texts; in the prison example,
about a page of code was available.

The algorithm was run on the prison text. A portion of the final result is shown
in Figure 4. It gives a useful decoding that seemed to work on additional texts.

Figure 4:

I like this example because a) it is real, b) there is no question the algorithm found
the correct answer, and c) the procedure works despite the implausible underlying
assumptions. In fact, the message is in a mix of English, Spanish and prison jargon.
The plausibility measure is based on first-order transitions only. A preliminary
attempt with single-letter frequencies failed. To be honest, several practical details
have been omitted: we allowed an unspecified “?” symbol in the deviation (with
transitions to and from “?” being initially uniform). The display in Figure 4 was
“cleaned up” by a bit of human tinkering. I must also add that the algorithm
described has a perfectly natural derivation as Bayesian statistics. The decoding
function f is a parameter in a model specifying the message as the output of a
Markov chain with known transition matrix M(x, y). With a uniform prior on f ,
the plausibility function is proportional to the posterior distribution. The algorithm
is finding the mode of the posterior.

In Section 2, I explain Markov chains and the Metropolis algorithm more care-
fully. A closely related Markov chain on permutations is analyzed in Section 3.
The arguments use symmetric function theory, a bridge between combinatorics and
representation theory.

A very different example — hard discs in a box — is introduced in Section 4. The
tools needed for study are drawn from analysis, micro-local techniques (Section 5)
along with functional inequalities (Nash and Sobolev inequalities).

Throughout, emphasis is on analysis of iterates of self-adjoint operators using
the spectrum. There are many other techniques used in modern probability. A brief
overview, together with pointers on how a beginner can learn more, is in Section 6.
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2. A brief treatise on Markov chains

2.1. A finite case. Let X be a finite set. A Markov chain is defined by a matrix
K(x, y) with K(x, y) ≥ 0,

∑
y K(x, y) = 1 for each x. Thus each row is a probability

measure so K can direct a kind of random walk: from x, choose y with probability
K(x, y); from y choose z with probability K(y, z), and so on. We refer to the
outcomes X0 = x, X1 = y, X2 = z, . . . , as a run of the chain starting at x. From
the definitions P (X1 = y|X0 = x) = K(x, y), P (X1 = y, X2 = z|X0 = x) =
K(x, y)K(y, z). From this,

P (X2 = z|X0 = x) =
∑

y

K(x, y)K(y, z),

and so on. The nth power of the matrix has x, y entry P (Xn = y|X0 = x).
All of the Markov chains considered in this article have stationary distributions

π(x) > 0,
∑

x π(x) = 1 with π satisfying

(2.1)
∑

x

π(x)K(x, y) = π(y).

Thus π is a left eigenvector of K with eigenvalue 1. The probabilistic interpretation
of (2.1) is “pick x from π and take a step from K(x, y); the chance of being at y is
π(y).” Thus π is stationary for the evolution. The fundamental theorem of Markov
chains (a simple corollary of the Peron–Frobenius theorem) says, under a simple
connectedness condition, π is unique and high powers of K converge to the rank
one matrix with all rows equal to π.

Theorem 1 (Fundamental theorem of Markov chains). Let X be a finite set and
K(x, y) a Markov chain indexed by X . If there is n0 so that Kn(x, y) ≥ 0 for all
n > n0, then K has a unique stationary distribution π and, as n → ∞,

Kn(x, y) → π(y) for each x, y ∈ X .

The probabilistic content of the theorem is that from any starting state x, the
nth step of a run of the Markov chain has a chance close to π(y) of being at y if
n is large. In computational settings, |X | is large, it is easy to move from x to y
according to K(x, y), and it is hard to sample from π directly.

Consider the cryptography example in the Introduction. There, X is the set of all
one-to-one functions f from code space to the usual alphabet {A, B, . . . , Z, 1, 2, . . . ,
9, 0, ∗, ., ?, . . . }. Assume there are m distinct code symbols and n symbols in the
alphabet space. The stationary distribution is

(2.2) π(f) = z−1
∏

i

M (f(si), f(si+1)) ,

where M is the (assumed given) first-order transition matrix of English and the
product ranges over consecutive coded symbols in the fixed message. The normal-
izing constant z is defined by

z =
∑

f

∏
i

(M (f(si), f(si+1))) .

Note that z is unknowable practically.
The problem considered here is to sample f ’s repeatedly from π(f). This seems

daunting because of the huge size of X and the problem of unknown z. The Me-
tropolis Markov chain K(f, f∗) solves this problem.
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2.2. Metropolis algorithm. Let X be a finite state space and π(x) a probability
on X (perhaps specified only up to an unknown normalizing constant). Let J(x, y)
be a Markov matrix on X with J(x, y) > 0 ↔ J(y, x) > 0. At the start, J is
unrelated to π. The Metropolis algorithm changes J to a new Markov matrix
K(x, y) with stationary distribution π. It is given by a simple recipe:

(2.3) K(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J(x, y) if x �= y, A(x, y) ≥ 1,

J(x, y)A(x, y) if x �= y, A(x, y) < 1,

J(x, y) +
∑

z:A(x,z)<1

J(x, z)(1 − A(x, z)) if x = y.

In (2.3), the acceptance ratio is A(x, y) = π(y)J(y, x)/π(x)J(x, y). The formula
(2.3) has a simple interpretation: from x, choose y with probability J(x, y); if
A(x, y) ≥ 1, move to y; if A(x, y) < 1, flip a coin with this success probability and
move to y if success occurs; in other cases, stay at x. Note that the normalizing
constant for π cancels out in all calculations. The new chain satisfies

π(x)K(x, y) = π(y)K(y, x),

and thus ∑
x

π(x)K(x, y) =
∑

x

π(y)K(y, x) = π(y)
∑

x

K(y, x) = π(y),

so that π is a left eigenvector with eigenvalue 1. If the chain (2.3) is connected,
Theorem 1 is in force. After many steps of the chain, the chance of being at y is
approximately π(y), no matter what the starting state X . Textbook treatments of
the Metropolis algorithm are in [44] or [62]. A literature review can be found in
[31].

In the cryptography example X is all one-to-one functions from symbol space (say
of size m) to alphabet space (say of size n ≥ m). Thus |X | = n(n−1) · · · (n−m+1).
This is large if, e.g., m = n = 50. The stationary distribution is given in (2.2). The
proposal chain J(f, f∗) is specified by a random switch of two symbols,

J(f, f∗) =

{
1

n(n−1)(m−n+2)(m−n+1) if f, f∗ differ in at most two places,

0 otherwise.

Note that J(f, f∗) = J(f∗, f), so A(f, f∗) = π(f∗)/π(f).

2.3. Convergence. A basic problem of Markov chain theory concerns the rate of
convergence in Kn(x, y) → π(y). How long must the chain be run to be suitably
close to π? It is customary to measure distances between two probabilities by total
variation distance:

‖Kn
x − π‖TV =

1
2

∑
y

|Kn(x, y) − π(y)| = max
A⊆X

|Kn(x, A) − π(A)|.

This yields the math problem: Given K, π, x and ε > 0, how large n so

‖Kn
x − π‖TV < ε?

Sadly, there are very few practical problems where this question can be an-
swered. In particular, no useful answer in known for the cryptography problem. In
Section 3, a surrogate problem is set up and solved. It suggests that when n

.= m,
order n log n steps suffice for mixing.
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Suppose, as is the case for the examples in this paper, that the Markov chain
is reversible: π(x)K(x, y) = π(y)K(y, x). Let L2(π) be {g : X → R} with inner
product

〈g, h〉 =
∑

x

g(x)h(x)π(x).

Then K operates on L2 by

Kg(x) =
∑

g(y)K(x, y).

Reversibility implies 〈Kg, h〉 = 〈g, Kh〉, so K is self-adjoint. Now, the spectral
theorem says there is an orthonormal basis of eigenvectors ψi and eigenvalues βi

(so Kψi = βiψi) for 0 ≤ i ≤ |X | − 1 and 1 = β0 ≥ β1 ≥ · · · ≥ β|X |−1 ≥ −1. By
elementary manipulations,

K(x, y) = π(y)
|X |−1∑
i=0

βiψi(x)ψi(y),

Kn(x, y) = π(y)
|X |−1∑
i=0

βn
i ψi(x)ψi(y).

Using the Cauchy–Schwartz inequality, we have

(2.4) 4‖Kn
x − π‖2

TV ≤
∑

y

(Kn(x, y) − π(y))2

π(y)
=

|X |−1∑
i=1

β2n
i ψ2

i (x).

The bound (2.4) is the basic eigenvalue bound used to get rates of convergence
for the examples presented here. To get sharp bounds on the right hand side
requires good control of both eigenvalues and eigenvectors. For more detail and
many examples, see [79]. A detailed example on the permutation group is given
in Section 3 below. Examples on countable and continuous spaces are given in
Section 5.

2.4. General state spaces. Markov chains are used to do similar calculations
on Euclidean and infinite-dimensional spaces. My favorite introduction to Markov
chains is the book by Bremaud [10], but there are many sources: For finite state
spaces see [83]. For a more general discussion, see [7] and the references in Section
6.1.

Briefly, if (X , B) is a measurable space, a Markov kernel K(x, dy) is a probability
measure K(x, ·) for each x. Iterates of the kernel are given by, e.g.,

K2(x, A) =
∫

K(z, A)K(x, dz).

A stationary distribution is a probability π(dx) satisfying

π(A) =
∫

K(x, A)π(dx)

under simple conditions Kn(x, A) → π(A) and exactly the same problems arise.
Reversible Markov chains yield bounded self-adjoint operators and spectral tech-

niques can again be tried. Examples are in Section 4, Section 5, and Section 6.
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3. From cryptography to symmetric function theory

This section answers the question, “What does a theorem in this subject look
like?” It also illustrates how even seemingly simple problems can call on tools from
disparate fields, in this case, symmetric function theory, a blend of combinatorics,
and representation theory. This section is drawn from joint work with Phil Hanlon
[21].

3.1. The problem. Let X = Sn, the symmetric group on n letters. Define a
probability measure on Sn by

(3.1) π(σ) = z−1θd(σ,σ0) for σ, σ0 ∈ Sn, 0 < θ ≤ 1.

In (3.1), d(σ, σ0) is a metric on the symmetric group, here taken to be

d(σ, σ0) = minimum number of transpositions required to bring σ to σ0.

This is called Cayley’s distance in [20] because a result of A. Cayley implies that
d(σ, σ0) = n − c(σ−1σ0) with c(σ) the number of cycles in σ. The metric is bi-
invariant:

d(σ, σ0) = d(τσ, τσ0) = d(στ, σ0τ ).

The normalizing constant z is known in this example:

z =
∑

σ

θd(σ,σ0) =
n∏

i=1

(1 + θ(i − 1)).

If θ = 1, π(σ) is the uniform distribution on Sn. For θ < 1, π(σ) is largest
at σ0 and falls off from its maximum as σ moves away from σ0. It serves as a
natural non-uniform distribution on Sn, peaked at a point. Further discussion of
this construction (called Mallows model through Cayley’s metric) with examples
from psychology and computer science is in [18, 19, 28]. The problem studied here
is

How can samples be drawn from σ?

One route is to use the Metropolis algorithm, based on random transpositions.
Thus, from σ, choose a transposition (i, j) uniformly at random and consider
(i, j)σ = σ∗. If d(σ∗, σ0) ≤ d(σ, σ0), the chain moves to σ∗. If d(σ∗, σ0) > d(σ, σ0),
flip a θ-coin. If this comes up heads, move to σ∗; else stay at σ. In symbols,
(3.2)

K(σ, σ∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/
(
n
2

)
if σ∗= (i, j)σ, d(σ∗, σ0) < d(σ, σ0),

θ/
(
n
2

)
if σ∗= (i, j)σ, d(σ∗, σ0) > d(σ, σ0),

c
(
1 − θ/

(
n
2

))
if σ∗= σ, with c =# {(i, j) : d((i, j)σ, σ0)>d(σ, σ0)} ,

0 otherwise.

Observe that this Markov chain is “easy to run”. The Metropolis construction
guarantees that

π(σ)K(σ, σ∗) = π(σ∗)K(σ∗, σ),
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so that the chain has stationary distribution π. When n = 3 and σ0 = id, the
transition matrix is

id (12) (13) (23) (123) (132)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − θ θ
3

θ
3

θ
3 0 0

1
3

2
3 (1 − θ) 0 0 θ

3
θ
3

1
3 0 2

3 (1 − θ) 0 θ
3

θ
3

1
3 0 0 2

3 (1 − θ) θ
3

θ
3

0 1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

id
(12)
(13)
(23)
(123)
(132)

The stationary distribution is the left eigenvector proportional to (1, θ, θ, θ, θ2, θ2).
This example bears a passing resemblance to the cryptography example: the set

of one-to-one functions of an m-set to an n-set is replaced by the symmetric group.
Presumably, the stationary distribution in the cryptography example is peaked at
a point (the best decoding) and the algorithms are essentially the same.

To analyze the chain (3.2) using spectral theory requires knowledge of the eigen-
values and vectors. By what still seems like a miracle, these are available in closed
form. When θ = 1, the chain (3.2) reduces to the transpose at random chain, per-
haps the first Markov chain given a sharp analysis [32]. Here is a typical result
drawn from work with Phil Hanlon [21].

Theorem 2. For 0 < θ ≤ 1, the Markov chain K(σ, σ∗) in (3.2) has stationary
distribution π from (3.1). Let k = an log n + cn with a = 1/2θ + 1/4θ(1/θ− θ) and
c > 0. Then, with σ0 = id and starting from the identity

‖Kk − π‖TV ≤ f(θ, c),

with f(θ, c) → 0 for c → 0.

Remarks. The result shows that order n log n steps suffice to make the distance to
stationarity small. The function f(θ, c) is explicit but a bit of a mess. There is a
matching lower bound showing that order n log n steps are necessary as well. In
the theorem, σ0 was chosen as the identity and the chain starts at σ0. If the chain
starts far from the identity, for example at an n-cycle, it can be shown that order
n2 log n steps suffice. When, e.g., n = 52, n log n

.= 200, while n2 log n
.= 11, 000.

These numbers give a useful feel for the running time.

3.2. Tools from symmetric function theory. The first step of analysis is to
reduce the state space from the full symmetric group to the set of conjugacy classes.
(Recall these are indexed by partitions of n.) The matrix K(σ, σ∗) commutes with
the action of the symmetric group by conjugation, so only transitions between
conjugacy classes are needed. When n = 3, the transition matrix becomes

13 1, 2 3
13

⎛
⎜⎝

1 − θ θ 0
1
3

2
3 (1 − θ) 2

3θ

0 1 0

⎞
⎟⎠1, 2

3



THE MARKOV CHAIN MONTE CARLO REVOLUTION 187

with stationary distribution proportional to (1, 3θ, 2θ2). Let

(3.3) M(µ, λ), m(λ)

be the transition matrix and let stationary distribution be indexed by partitions
λ, µ.

Theorem 3. For 0 < θ ≤ 1, the Markov chain (3.3) has an eigenvalue βλ for each
partition (λ1, λ2, . . . , λr) of n with

βλ = (1 − θ) +
θn(λt) + n(λ)(

n
2

) , n(λ) =
n∑

i=1

(i − 1)λi.

The corresponding right eigenfunction, normed to be orthonormal in L2(m), is

(3.4)
cλ(·)

m(λ){jλπ/θnn!}1/2
.

In (3.4), cλ are the change of basis coefficients in expressing the Jack symmetric
functions in terms of the power-symmetric functions. The normalizing constant in
(3.4) involves closed form, combinatorially defined terms, which will not be detailed
further.

Here is an aside on the cλ(·). Classical combinatorics involves things like par-
titions, permutations, graphs, balls in boxes, and so on. A lot of this has been
unified and extended in the subject of algebraic combinatorics. A central theme
here is the ring Λn(x1 . . . xk) of homogeneous symmetric polynomials of degree n.
There are various bases for this space. For example, if Pi(x1 . . . xk) =

∑
xi

j and
Pλ = Pλ1Pλ2 · · ·Pλn

, the Pλ form a basis as λ runs through the partitions of n
(fundamental theorem of symmetric functions). Other well-known bases are the
monomial and elementary symmetric functions. The stars of the show are the
Schur functions (character of the general linear group). The change of basis matri-
ces between these codes up a lot of classical combinatorics. A two-parameter family
of bases, the Macdonald polynomials, is a central focus of modern combinatorics.
Definitive, inspiring accounts of this are in Macdonald [65] and Stanley [82].

The Jack symmetric functions Jλ(x; α) are one of the many bases. Here x =
(x1 · · ·xk) and α is a positive real parameter. When α = 1, the Jacks become the
Schur functions. When α = 2, the Jacks become the zonal polynomials (spherical
functions of GLn/On). Before the work with Hanlon, no natural use for other
values of α was known. Denote the change of basis coefficients from Jacks to power
sums by

Jλ(x; α) =
∑
µ�n

c(λ, µ)Pµ(x).

The c(λ, µ) are rational functions of α. For example, when n = 3,

J13 = P 3
1 − 3P12 − 2P3,

J12 = P 3
1 + (α − 1)P12 − αP3,

J3 = P 3
1 − 3αP12 + 2α2P3.

The algebraic combinatorics community had developed properties of Jack sym-
metric functions “because they were there”. Using this knowledge allowed us to
properly normalize the eigenfunctions and work with them to prove Theorems 1 and
2. Many more examples of this type of interplay are in [14]. A textbook account
of our work is in [48].
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There is a fascinating research problem opened up by this analysis. When θ = 1,
the Jack symmetric functions are Schur functions and the change of basis coef-
ficients are the characters of the symmetric group. The Markov chain becomes
random transpositions. This was analyzed in joint work with Shahshahani [32].
Adding in the deformation by the Metropolis algorithm deforms the eigenvalues
and eigenvectors in a mathematically natural way. Is there a similar deformation
that gets the coefficients of the Macdonald polynomials? This is ongoing joint work
with Arun Ram. Changing the metric on Sn, using pairwise adjacent transpositions
instead of all transpositions, gives a deformation to Hecke algebras. The Metropolis
algorithm gives a probabilistic interpretation of the multiplication in these algebras.
This again is joint work with Ram [28]. This affinity between the physically natural
Metropolis algorithm and algebra is a mystery which cries out for explanation.

Turning back toward the cryptography example, how do things change if we go
from the permutation group to the set of one-to-one functions from an m-set to
an n-set? When θ = 1, this was worked out by Andrew Greenhalgh. The analysis
involves the algebra of functions on Sn which are invariant under conjugation by
the subgroup Sm ×Sn−m and bi-invariant under the subgroup Sn−m. These doubly
invariant functions form a commutative algebra discussed further in [14, Sect. 9.8].
Do things deform well when θ �= 1? It is natural to guess the answer is Yes.

It is important to end these fascinating success stories with the observation that
any similarly useful analysis of the original cryptography example seems remote.
Further, getting rates of convergence for the Metropolis algorithm for other metrics
in (3.1) is a challenging open problem.

4. Hard discs in a box

Consider possible placements of n discs of radius ε in the unit square. The discs
must be non-overlapping and completely contained in the unit square. Examples
at low and high density (kindly provided by Werner Krauth from [57]) are shown
in Figure 5.

η = 0.48 η = 0.72

Figure 5:

In applications, n is fairly large (e.g., 100–106) and of course ε should be suitably
small. The centers of the discs give a point in R

2n. We know very, very little about
the topology of the set X (n, ε) of configurations: for fixed n, what are useful bounds
on ε for the space to be connected? What are the Betti numbers? Of course, for
ε small this set is connected but very little else is known. By its embedding in
R

2n, X (n, ε) inherits a natural uniform distribution, Lebesgue measure restricted
to X (n, ε). The problem is to pick points in X (n, ε) uniformly. If X1, X2, . . . , Xk
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are chosen from the uniform distribution and f : X (n, ε) → R is a function, we may
approximate

(4.1)
∫
X (n,ε)

f(x)dx by
1
k

k∑
i=1

f(Xi).

Motivation for this task and some functions f of interest will be given at the end
of this section.

This hard disc problem is the original motivation for the Metropolis algorithm.
Here is a version of the Metropolis algorithm for hard discs.

• Start with some x ∈ X (n, ε).
• Pick a disc center at random (probability 1/n).
• Pick a point in a disc of radius h, centered at the chosen disc center at

random (from Lebesgue measure).
• Try to move the chosen disc center to the chosen point; if the resulting

configuration is in X (n, ε), accept the move; else, stay at x.
The algorithm continues, randomly moving coordinates. If X1, X2, . . . , Xk denotes
the successive configurations, theory shows that Xk becomes uniformly distributed
provided ε, k are small. For large k, the Xi can be used as in (4.1).

Motivation. The original motivation for this problem comes from the study of
phase transition in statistical mechanics. For many substances (e.g., water), exper-
iments produce phase diagrams such as that shown in Figure 6.

Figure 6:

Every aspect of such phase diagrams is intensely studied. The general picture, a
finite length liquid–vapor phase transition line ending in a critical point, a triple
point where all three forms co-exist and a solid–liquid phase line seemingly extend-
ing to infinity, seems universal. The physicist G. Uhlenbeck [87, p. 11] writes “Note
that since these are general phenomena, they must have general explanation; the
precise details of the molecular structure and of the intermolecular forces should
not matter.” In discussing the solid–liquid transition, Uhlenbeck [87, p. 18] notes
that the solid–liquid transition seemingly occurs at any temperature provided the
pressure is high enough. He suggests that at high pressure, the attractive inter-
molecular force does not play a role “. . . and that it is the sharp repulsive forces that
are responsible for the solid–fluid transition. It is this train of thought that explains
the great interest of the so-called Kirkwood transition. In 1941, Kirkwood posed
the problem of whether a gas of hard spheres would show a phase transition. . . ”.

From then to now, chemists and physicists have studied this problem using a
variety of tools. Current findings indicate a phase transition when the density of
discs is large (about .71, still well below the close packing density). Below this
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transition density, the discs “look random”; above this density the discs look close
to a lattice packing. These notions are quantified by a variety of functions f . For
example,

f(x) =

∣∣∣∣∣∣
1
N

N∑
j=1

1
Nj

∑
k

e6iθjk

∣∣∣∣∣∣ ,

where the sum is over the N particles encoded by x ∈ R
2N , the sum in k is over the

Nj neighbors of the jth particle, and θjk is the angle between the particles j and k
in an arbitrary but fixed reference frame. If the configuration x has a local hexatic
structure, this sum should be small. Typical values of f are studied by simulation.
Different functions are used to study long-range order.

The above rough description may be supplemented by the useful survey of [64].
A host of simulation methods are detailed in [2]. An up-to-date tutorial on hard
discs appears in [57, Chap. 2].

For the purposes of this paper, the main points are i) the hard disc model is a
basic object of study and ii) many key findings have been based on variants of the
Metropolis algorithm. In the next section, we flush out the Metropolis algorithm
to more standard mathematics.

5. Some mathematics

Here is a generalization of the hard discs Metropolis algorithm. Let Ω ⊆ R
d be

a bounded connected open set. Let p̄(x) > 0, z =
∫
Ω

p̄(x)dx < ∞, p(x) = z−1p̄(x)
specify a probability density on Ω. If required, extend p to have value 0 outside the
closure of Ω. Many sampling problems can be stated thus:

Given p̄, choose points in Ω from p.

Note that the normalizing constant z may not be given and is usually impossible to
usefully approximate. As an example, consider placing fifty hard discs in the unit
square when ε = 1/100. The set of allowable configurations is a complex, cuspy set.
While p̄ ≡ 1 on Ω, it would not be practical to compute z. Here is one version of
the Metropolis algorithm which samples from p. From x ∈ Ω, fix a small, positive
h.

• Choose y ∈ Bx(h), from normalized Lebesgue measure on this ball.
• If p(y) ≥ p(x), move to y.
• If p(y) < p(x), move to y with probability p(y)/p(x).
• Else stay at x.

Note that this algorithm does not require knowing z. The transition from x to y
yields a transition kernel

(5.1)
P (x, dy) = m(x)δx +

h−d

Vol(B1)
δB1

(
x − y

h

)
min

(
p(x)
p(y)

, 1
)

dy

with m(x) = 1 −
∫

Rd

h−d

Vol(B1)
δB1

(
x − y

h

)
min

(
p(x)
p(y)

, 1
)

dy.

This kernel operates on L2(p) via

P · f(x) =
∫

Rd

f(y)P (x, dy).
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It is easy to see that P (x, dy) is a bounded self-adjoint operator on L2(p). The
associated Markov chain may be described “in English” by

• Start at X0 = x ∈ Ω.
• Pick X1 from P (x, dy).
• Pick X2 from P (X1, dy).
• And so on . . . .

Thus

P{X2 ∈ A} = P 2
x (A) =

∫
Rd

P (z, A)P (x, dz),

P{Xk ∈ A} = P k
x (A) =

∫
Rd

P (z, A)P k−1(x, dz).

Under our assumptions (Ω connected, h small), for all x ∈ Ω and A ⊆ Ω, the
algorithm works:

P k
x (A) k−→

∞

∫
A

p(y)dy.

It is natural to ask how fast this convergence takes place: how many steps should
the algorithm be run to do its job? In joint work with Gilles Lebeau and Laurent
Michel, we prove the following.

Theorem 4. Let Ω be a connected Lipshitz domain in R
d. For p measurable (with

0 < m ≤ p(x) ≤ M < ∞ on Ω) and h fixed and small, the Metropolis algorithm
(5.1) satisfies

(5.2)
∣∣∣∣P k

x (A) −
∫

A

p(y)dy

∣∣∣∣ ≤ c1e
−c2kh2

uniformly in x ∈ Ω, A ⊆ Ω.

In (5.2), c1, c2 are positive constants that depend on p̄ and Ω but not on x, k
or h. The result is sharp in the sense that there is a matching lower bound. Good
estimates of c2 are available (see the following section).

Note that the Metropolis algorithm (5.1) is based on steps in the full-dimensional
ball Bε(x) while the Metropolis algorithm for discs in Section 2 is based on just
changing two coordinates at a time. With extra effort, a result like (5.2) can be
shown for the hard disc problem as well. Details are in [25]. As a caveat, note that
we do not have good control on c1 in terms of the dimension d or smoothness of Ω.
The results are explicit but certainly not sharp.

The Metropolis algorithm of this section is on a Euclidean space with basic steps
driven by a ball walk. None of this is particularly important. The underlying state
space can be quite general, from finite (all one-to-one functions from one finite set
to another as in our cryptography example) to infinite-dimensional (Markov chains
on spaces of measures). The proposal distribution needn’t be symmetric. All of
the introductory books on simulation discussed in Section 6 develop the Metropolis
algorithm. In [8] it is shown to be the L1 projection of the proposal distribution to
the p self-adjoint kernels on Ω. A survey of rates of convergence results on finite-
state spaces with extensive references to the work of computer science theorists
on approximate counting and mathematical physicists on Ising models is in [31].
Finally, there are many other classes of algorithms and proof techniques in active
development. This is brought out in Section 6 below.
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5.1. Ideas and tools. To analyze rates of convergence it is natural to try spec-
tral theory, especially if the operators are self-adjoint. This sometimes works. It
is sometimes necessary to supplement with tools, such as comparison and exten-
sion theory, Weyl-type bounds on eigenvalues, bounds on eigenvectors, and Nash–
Sobolev inequalities. These are basic tools of modern analysis. Their use in a
concrete problem may help some readers come into contact with this part of the
mathematical world.

Spectral bounds for Markov chains. Let X be a set, µ(dx) a reference measure
and m(x) a probability density with respect to µ (so m(x) ≥ 0,

∫
m(x)µ(dx) =

1). Let P (x, dy) be a Markov kernel on X . This means that for each x, P (x, ·)
is a probability measure on X . This P may be used to “run a Markov chain”
X0, X1, X2, . . . , with starting state X0 = x say, by choosing X1 from P (x, ·) and
then X2 from P (X1, ·), and so on. The pair (m, P ) is called reversible (physicists say
“satisfies detailed balance”) if P operating on L2(m) by Pf(x) =

∫
f(y)P (x, dy)

is self-adjoint: 〈Pf, g〉 = 〈f, Pg〉. Often, P (x, dy) = p(x, y)µ(dy) has a kernel and
reversibility becomes m(x)p(x, y) = m(y)p(y, x) for all x, y. This says the chain run
forward is the same as the chain run backward, in analogy with the time reversibility
of the laws of mechanics. Here P operates on all of L2(m) so we are dealing with
bounded self-adjoint operators.

Suppose for a moment that P has a square integrable kernel p(x, y), so Pf(x) =∫
X p(x, y)f(y)µ(dy). Then P is compact and there are eigenvectors fi and eigen-

values βi so
Pfi = βifi

under a mild connectedness condition f0 ≡ 1, β0 = 1 and 1 = β0 > β1 ≥ β2 ≥ · · · >
−1. Then

p(x, y) = m(x)
∞∑

i=0

βifi(x)fi(y),

and the iterated kernel satisfies

pn(x, y) = m(y)
∞∑

i=0

βn
i fi(x)fi(y).

If fi(x), fi(y) are bounded (or at least controllable), since f0 ≡ 1,

pn(x, y) → m(y) as n → ∞.

This is the spectral approach to convergence. Note that to turn this into a quanti-
tative bound (From starting state x, how large must n be to have ‖Pn

x −m‖ < ε?),
the βi and fi must be well understood.

The Metropolis algorithm on the permutation group discussed in Section 3 gives
an example on finite spaces. Here is an example with an infinite state space drawn
from my work with Khare and Saloff-Coste [23] where this program can be use-
fully pushed through. Note that this example does not arise from the Metropolis
construction. It arises from a second basic construction, Glauber dynamics.

Example 2 (Birth and immigration). The state space X = {0, 1, 2, . . . }. Let µ(dx)
be a counting measure and

(5.3) m(x) =
1

2x+1
, p(x, y) =

(
1
3

)x+y+1 (
x + y

x

)/(
1
2

)x+1

.
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This Markov chain is used to model population dynamics with immigration. If the
population size at generation n is denoted X, then, given Xn = x,

Xn+1 =
x∑

i=1

Ni,n + Mn+1,

where Ni,n, the number of offspring of the ith member of the population at time
n, are assumed to be independent and identically distributed with

p(Ni,n = j) =
2
3

(
1
3

)j

, 0 ≤ j < ∞.

Here Mn+1 is migration, assumed to have the same distribution as Ni,n. Note that
m(x)p(x, y) = m(y)p(y, x) so reversibility is in force.

In (5.3) the eigenvalues are shown to be βj = 1/2j , 0 ≤ j < ∞. The eigenfunc-
tions are the orthogonal polynomials for the measure 1/2j+1. These are Meixner
polynomials Mj(x) = 2F1

((−j−x
1

)
| − 1

)
. Now, the spectral representation gives the

following.

Proposition 1. For any starting state x for all n ≥ 0,

χ2
x(n) =

∞∑
y=0

(pn(x, y) − m(y))2

m(y)
=

∞∑
i=1

β2n
i M2

i (x)
1
2i

.

Next, there is an analysis problem: Given the starting population x, how large
should n be so that this chi-square distance to m is small? For this simple case,
the details are easy enough to present in public.

Proposition 2. With notation as in Proposition 1,

χ2
x(n) ≤ 2−2c for n = log2(1 + x) + c, c > 0,

χ2
x(n) ≥ 22c for n = log2(x − 1) − c, c > 0.

Proof. Meixner polynomials satisfy for all j and x > 0

|Mj(x)| =

∣∣∣∣∣
j∧x∑
i=0

(−1)i

(
j

i

)
x(x − 1) · · · (x − i + 1)

∣∣∣∣∣ ≤
j∑

i=0

(
j

i

)
xi = (1 + x)j .

Thus, for n ≥ log2(1 + x) + c,

χ2
x(n) =

∞∑
j=1

M2
j (x)2−j(2n+1) ≤

∞∑
j=1

(1 + x)2j2−j(2n+1)

≤ (1 + x)22−(2n+1)

1 − (1 + x)22−(2n+1)
≤ 2−2c−1

1 − 2−2c−1
≤ 2−2c.

The lower bound follows from using only the lead term. Namely

χ2
x(n) ≥ (1 − x)22−2n ≥ 22c for n = log2(x − 1) − c. �

The results show that convergence is rapid: order log2(x) steps are necessary
and sufficient for convergence to stationarity.

We were suprised and delighted to see classical orthogonal polynomials appearing
in a natural probability problem. The account [23] develops this and gives dozens
of other natural Markov chains explicitly diagonalized by orthogonal polynomials.
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Alas, one is not always so lucky. The Metropolis chain of (5.1) has the form
Pf(x) = m(x)f(x) +

∫
h(x, y)f(y)dy. The multiplier m(x) leads to a continuous

spectrum. One of our discoveries [24, 25, 59] is that for many chains, this can be
side-stepped and the basic outline above can be pushed through to give sharp useful
bounds.

5.2. Some theorems. Return to the Metropolis algorithm of Theorem 4. We are
able to prove the following.

Theorem 5. For a bounded Lipshitz domain in R
d, let p(x) satisfy 0 < m ≤ p(x) ≤

M < ∞ for all x ∈ Ω. Let Ph be defined by (5.1). There are h0 > 0, δ0 ∈ (0, 1),
and ci > 0 so that

• Spec Ph ⊆ [−1 + δ0, 1] for all h ≤ h0.
• 1 is a simple eigenvalue of Ph.
• Spec Ph ∩ [1 − δ0, 1] is discrete.
• The number of eigenvalues of Ph in [1 − h2λ, 1], 0 ≤ λ ≤ δ0h

−2 (with
multiplicity), is bounded above by c1(1 + λ)d/2.

• The spectral gap G(h) satisfies c2h
2 ≤ G(h) ≤ c3h

2.
• For all n ≥ 1 and any x ∈ Ω, ‖Pn

x,h − p‖TV ≤ c4e
−nG(h).

More precise evaluation of the gap is available if the boundary of the domain is
quasi-regular. Then consider the operator

Lf(x) =
−1

2(d + 1)

(
�f +

�p

p
· �f

)

with domain L = {f ∈ H2(p) : |∂nf |∂Ω = 0}. This L has compact resolvant with
eigenvalues 0 = ν0 < ν1 < ν2 < · · · .

Theorem 6. If ∂Ω is quasi-regular and the density p(x) is bounded and continuous
on Ω̄, then

lim
h→0

h−2G(h) = ν1.

Reducing to the Neuman problem for L sometimes allows accurate evaluation of
the gap [24, 59].

We are able to show that for the hard disc problem of Section 2, a suitable power
of the operator of (5.3) satisfies the conditions of Theorems 5 and 6. The associated
Ω for hard discs is a complex cuspy set and the extension of standard theory to
Lipshitz domains is truly forced.

Again, several caveats are in order. The theorems are satisfactory for a small
number of discs but for questions of physical relevance (the dense case), our results
have very little content. At present, we do not have good control over the depen-
dence of the constants on the various Lipshitz constants or dimensions. Previous
efforts to quantify such things [30] lead to results like c

.= (d/4)d/4. With 100 discs,
d = 200 and the practical relevance of the results may be questioned. Further, the
restriction to densities bounded below is a limitation. Of course, we hope to deal
with such issues in future work.

A second caveat: the Metropolis algorithm is not cutting-edge simulation tech-
nology. There are block analysis techniques and ways of making non-local moves
of several particles [37, 51] which seem useful and call out for analysis.
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Finally, spectral techniques are only one of many routes to analysis. Marvelous
theorems can be proved by coupling, and Harris recurrence techniques which com-
bine Lyapounov functions and coupling are often useful. Coupling arguments for
hard discs are in [26] and [54].

There is also a widely studied discrete version of the problem. There, n particles
are placed on the vertices of a connected graph. At each step, a particle is chosen
at random and a neighboring site is chosen at random. If the neighboring site is
empty, the chosen particle moves there; otherwise the particle stays where it was.
This is called “Kawasaki dynamics for the simple exclusion process”. This process,
with many variations, has a large literature usefully surveyed in [60]. Concrete
rates of convergence can be found in [29], [40], [67], [89], . . . . It is only fair to warn
the reader that the similar problem where particles move with a drift on a lattice
subject to exclusion (asymmetric exclusion process) has an even larger literature
and has evolved into quite a separate subject.

5.3. One idea. One contribution of the analysis which should be broadly useful
is an approach to avoiding the continuous spectrum. A wide variety of techniques
for bounding eigenvalues and decay of powers for stochastic (e.g., positive) kernels
has been developed by the probability community over the past 25 years. These
include inequalities of Poincaré, Nash, Sobolev, and the log-Sobolev type. A useful
reference for this material is [79]. The new idea is to apply these techniques to
pieces of the operators (which need not be stochastic). The discovery is that this
can be pushed through.

In more detail, consider the kernel Ph of (5.1) operating on L2(p). Write

Ph = Π + P 1
h + P 2

h + P 3
h

with Π the orthogonal projection onto the constants

P 1
h(x, y) =

∑
βj close to 1

βj(h)fj,h(x)fj,h(y),

P 2
h(x, y) =

∑
1
10<

1−βj

h2 < 9
10

βj,hfj,h(x)fj,h(y),

and
P 3

h = Ph − Π − P 1
h − P 2

h .

The pieces are orthogonal, so powers of Ph equal the sum of powers of the pieces.
Now P 1

h and P 2
h can be analyzed as above. Of course, bounds on eigenvalues and

eigenfunctions are still needed. The continuous spectrum is hidden in P 3
h and one

easily gets the crude bounds ‖P 3
h‖L∞→L∞ ≤ ch−3d/2, ‖P 3

h‖L2→L2 ≤ (1−δ0). These
can be iterated to give ‖(P 3

h)n‖L∞→L∞ ≤ ce−µn for a universal µ > 0 and all
n > 1/h. Thus P 3

h is negligible.
The work is fairly technical but the big picture is fairly stable. It holds for

natural walks on compact Riemannian manifolds [59] and in the detailed analysis
of the one-dimensional hard disc problem [24, 27].

The main purpose of this section is to show how careful analysis of an applied
algorithm can lead to interesting mathematics. In the next section, several further
applications of Markov chain Monte Carlo are sketched. None of these have been
analyzed.
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6. Going further, looking back;

contacts with math, contacts outside math

This section covers four topics: how someone outside probability can learn more
about the present subject; a literature review on rates of convergence; a list of
examples showing how a wide spectrum of mathematical tools have been used in
analyzing Markov chains; and pointers to applications in various scientific applica-
tions.

6.1. Going further. Suppose you are a “grown-up mathematician” who wants
to learn some probability. The problem is, probability has its own language and
images. It’s a little like learning quantum mechanics — the mathematical tools are
not a problem but the basic examples and images are foreign. There are two steps.
The first is elementary probability — the language of random variables, expectation,
independence, conditional probability, and the basic examples (binomial, Poisson,
geometric, normal, gamma, beta) with their distribution theory. The second is
mathematical probability — σ-algebras, laws of large numbers, central limit theory,
martingales, and brownian motion. Not to mention Markov chains.

The best procedure is to first sit in on an elementary probability course and then
sit in on a first-year graduate course. There are hundreds of books at all levels.
Two good elementary books are [39] and [78]. This last is a very readable classic
(don’t miss Chapter 3!). I use Billingsley’s book [9] to teach graduate probability.

To learn about Monte Carlo, the classic book [44] is short and contains most of
the important ideas. The useful books ([15] or [62]) bring this up to date. Two
very good accounts of applied probability which develop Markov chain theory along
present lines are [7] and [10]. The advanced theory of Markov chains is well covered
by [3] (analytic theory), [38] (semi-group theory), and [42] (Dirichlet forms). Two
very useful survey articles on rigorous rates of convergence are [67] and [79]. The
on-line treatise [1] has a wealth of information about reversible Markov chains. All
of the cited works contain pointers to a huge literature.

6.2. Looking back. In this article, I have focused on using spectral theory to
give rates of convergence for Markov chains. There are several other tools and
schools. Two important ones are coupling and Harris recurrence. Coupling is a
pure probability approach in which two copies of a Markov chain are considered.
One begins in stationarity, the second at a fixed starting point. Each chain evolves
marginally according to the given transition operator. However, the chains are also
set up to move towards each other. When they hit a common point, they couple
and then move on together. The chain started in stationarity is stationary at every
step, in particular at the coupling time T . Thus, at time T , the chain starting from
a fixed point is stationary. This approach transforms the task of bounding rates
of convergence to bounding the coupling time T . This can sometimes be done by
quite elementary arguments. Coupling is such a powerful and original tool that
it must have applications far from its origins. A recent example is Robert Neel’s
proof [71] of Liouville theorems for minimal surfaces.

Book-length treatments of coupling are [61] and [86]. The very useful path cou-
pling variant in [11] and [35] is developed into a marvelous theory of Ricci curvature
for Markov chains by [73]. The connections between coupling and eigenvalues is
discussed in [12]. The coupling from the past algorithm of Propp–Wilson [77] has
made a real impact on simulation. It sometimes allows exact samples to be drawn
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from intractable probability distributions. It works for the Ising model. I clearly
remember my first look at David Wilson’s sample of a 2, 000 × 2, 000 Ising model
at the critical temperature. I felt like someone seeing Mars through a telescope for
the first time.

Harris recurrence is a sophisticated variant of coupling which has a well-developed
user interface. This avoids the need for clever, ad hoc constructions. The two chains
can be exactly coupled for general state spaces when they hit a small set. They
can be driven to the small set by a Lyapounov function. A splendid introduction
to Harris recurrence is in [53]. A book-length development is [68]. The topic is
often developed under the name of geometric ergodicity. This refers to bounds of
the form ‖Kl

x − π‖TV ≤ A(x)γl for A(x) > 0 and 0 < γ < 1. Observe that usually,
proofs of geometric ergodicity give no hold on A(x) or on γ. In this form, the
results are practically useless, saying little more than “the chain converges for large
l”. Bounds with explicit A(x), γ are called “honest” in the literature [53]. The
work of Jim Hobert and his collaborators is particularly rich in useful bounds for
real examples. For further discussion and references, see [23] and [50].

In the presence of geometric ergodicity, a wealth of useful auxiliary results be-
comes available. These include central limit theorems and large deviations bounds
for averages 1/N

∑
f(Xi) [56]. The variance of such averages can be usefully esti-

mated [46]. One can even hope to do perfect sampling from the exact stationary
distribution [55]. There has been a spirited effort to understand what the set-up
required for Harris recurrence says about the spectrum [5, 6]. (Note that coupling
and Harris recurrence do not depend on reversibility.)

6.3. Contacts with math. The quest for sharp analysis of Markov chains has led
to the use and development of tools from various areas of mathematics. Here is a
personal catalog.

Group representations. Natural mixing schemes can sometimes be represented as
random walks on groups or homogeneous spaces. Then, representation theory al-
lows a useful Fourier analysis. If the walks are invariant under conjugation, only
the characters are needed. If the walks are bi-invariant under a subgroup giving a
Gelfand pair, the spherical functions are needed. A book-length discussion of this
approach can be found in [14]. Sometimes, the probability theory calls for new
group theory. An example is the random walk on the group of upper-triangular
matrices with elements in a finite field: Starting at the identity, pick a row at
random and add it to the row above. The character theory of this group is wild.
Carlos-Andre has created a cruder super-character theory which is sufficiently rich
to handle random walk problems. The detailed use of this required a new formula
[4] and leads to an extension of the theory to algebra groups in joint work with
Isaacs and Theme [22, 34]. This has blossomed into thesis projects [45, 84, 85].
This thread is a nice example of the way that applications and theory interact.

Algebraic geometry. The creation of Markov chains to efficiently perform a sampling
task can lead to interesting mathematics. As an example, consider the emerging
field of algebraic statistics. I was faced with the problem of generating (uniformly)
random arrays with given row and column sums. These arrays (called “contingency
tables” in statistics) have non-negative integer entries. For two-dimensional arrays,
a classical Markov chain Monte Carlo algorithm proceeds as follows. Pick a pair of
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rows and a pair of columns at random; this delineates four entries. Change these
entries by adding and subtracting in one of the following patterns:(

+ −
− +

)
or

(
− +
+ −

)
.

This doesn’t change the row/column sums. If the resulting array still has non-
negative entries, the chain moves there. Otherwise, the chain stays at the original
array.

I needed to extend this to higher-dimensional arrays and similar problems on the
permutation group and other structures where linear statistics are to be preserved.
The problem is that the analog of the

(
+ −
− +

)
moves that statisticians have thought

of does not connect the space. Bernd Sturmfels recognized the original
(

+ −
− +

)
moves as generators of a determinental ideal and suggested coding the problem
up as finding generators of a toric ideal. All of the problems fit into this scheme
and the emerging fields of computational algebra and Gröbner bases allow practical
solutions. The story is too long to tell here in much detail. The original ideas are
worked out in [33]. There have been many extensions, bolstered by more than a
dozen Ph.D. theses. A flavor of this activity and references can be gathered from
[49]. The suite of computational resources in the computer package Latte also
contains extensive documentation. The subject of algebraic statistics has expanded
in many directions. See [74] for its projection into biology, and [76] for its projection
into the design of experiments. As usual, the applications call for a sharpening of
algebraic geometric tools and raise totally new problems.

For completeness I must mention that despite much effort, the running time
analysis of the original Markov chain on contingency tables has not been settled.
There are many partial results suggesting that (diam)2 steps are necessary and
sufficient, where diameter refers to the graph with an edge between two arrays if
they differ by a

(
+ −
− +

)
move. There are also other ways of sampling that show

great promise [16]. Carrying either the analysis or the alternative procedures to
the other problems in [33] is a healthy research area.

PDE. The analysis of Markov chains has a very close connection with the study
of long time behavior of the solutions of differential equations. In the Markov
chain context we are given a kernel K(x, dy) with reversible stationary measure
π(dx) on a space X . Then K operates as a self-adjoint contraction on L2(π) via
Kf(x) =

∫
f(y)K(x, dy). The associated quadratic form E(f |g) = 〈(I − K)f, g〉 is

called the Dirichlet form in probability. A Poincaré inequality for K has the form

‖f‖2
2 ≤ AE(f |f) for all f ∈ L2(π) with

∫
fdπ = 0.

Using the minimax characterization, a Poincaré inequality shows that there is no
spectrum for the operator in [1 − 1/A, 1) (Markov operators always have 1 as an
eigenvalue). There is a parallel parity form which allows bounding negative spec-
trum. If the spectrum is supported on [−1 + 1/A, 1 − 1/A] and the Markov chain
is started at a distribution σ with L2 density g, then

‖Kl
σ − π‖2

TV ≤ ‖g − 1‖2
2

(
1 − 1

A

)2l

.
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This is a useful, explicit bound but it is often “off”, giving the wrong rate of
convergence by factors of n or more in problems on the symmetric group Sn. A
host of more complex techniques can give better results. For example, K satisfies
a Nash inequality if for all suitable f ,

‖f‖2+1/D
2 ≤ A

{
E(f |f) +

1
N

‖f‖2
2

}
‖f‖1/D

1 ,

and a log-Sobolev inequality if

L(f) ≤ AE(f |f), L(f) =
∫

f2(x) log
f(x)2

‖f‖2
2

π(dx).

Here A, N and D are constants which enter into any conclusions. These inequalities
are harder to establish and have stronger conequences. Related inequalities of
Cheeger and Sobolev are also in widespread use. For surveys of this technology,
see [69] or [79]. The point here is that most of these techniques were developed
to study PDE. Their adaptation to the analysis of Markov chains requires some
new ideas. This interplay between the proof techniques of PDE and Markov chains
has evolved into the small but healthy field of functional inequalities [5, 6] which
contributes to both subjects.

Modern PDE is an enormous subject with many more tools and ideas. Some
of these, for example, the calculus of pseudo-differential operators and micro-local
techniques, are just starting to make inroads into Markov chain convergence [24,
25, 59].

A major omission in the discussion above are the contributions of the theoret-
ical computer science community. In addition to a set of problems discussed in
the final part of this section, a host of broadly useful technical developments have
emerged. One way of saying things is this: How does one establish any of the in-
equalities above (from Poincaré through log-Sobolev) in an explicit problem? Mark
Jerrum and Alistair Sinclair introduced the use of paths to prove Cheeger inequali-
ties (called “conductance” in computer science). Dyer, Frieze, Lovász, Kannan and
many students and coauthors have developed and applied these ideas to a host of
problems, most notably the problems of approximating the permanent of a matrix
and approximating the volume of a convex set. Alas, this work suffers from the
“polynomial time bug”. The developers are often satisfied with results showing
that n17 steps suffice (after all, it’s a polynomial). This leads to theory of little use
in practical problems. I believe that the ideas can be pushed to give useful results,
but at the present writing much remains to be done. A good survey of this set of
ideas can be found in [69].

6.4. Contacts outside math. To someone working in my part of the world, asking
about applications of Markov chain Monte Carlo (MCMC) is a little like asking
about applications of the quadratic formula. The results are really used in every
aspect of scientific inquiry. The following indications are wildly incomplete. I
believe you can take any area of science, from hard to social, and find a burgeoning
MCMC literature specifically tailored to that area. I note that essentially none of
these applications is accompanied by any kind of practically useful running time
analysis. Thus the following is really a list of open research problems.

Chemistry and physics. From the original application to hard discs through lattice
gauge theory [66], MCMC calculations are a mainstay of chemistry and physics.
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I will content myself by mentioning four very readable books, particularly good
at describing the applications to an outsider; I have found them useful ways to
learn the science. For physics, [57] and [72]. For chemistry, [41] and [58]. A good
feeling for the ubiquity of MCMC can be gleaned from the following quote from
the introductory text of the chemist Ben Widom [88, p. 101]:

“Now, a generation later, the situation has been wholly trans-
formed, and we are able to calculate the properties of ordinary
liquids with nearly as much assurance as we do those of dilute
gases and harmonic solids . . . . What is new is our ability to realize
van der Waal’s vision through the intervention of high speed digital
computing.”

Biology. One way to access applications of MCMC in various areas of biology is to
look at the work of the statistical leaders of groups driving this research: Jun Liu
(Harvard), Michael Newton (Wisconsin), Mike West (Duke) and Wing Wong (Stan-
ford). The homepages of each of these authors contain dozens of papers, essentially
all driven by MCMC. Many of these contain innovative, new algorithms (waiting to
be studied). In addition, I mention the online resources “Mr. Bayes” and “Bugs”.
These give hundreds of tailored programs for MCMC biological applications.

Statistics. Statisticians work with scientists, engineers, and businesses in a huge
swathe of applications. Perhaps 10–15% of this is driven by MCMC. An overview
of applications may be found in the books [43] or [62]. For the very active area
of particle filters and their many engineering applications (tracking, filtering), see
[36]. For political science–flavored applications, see [43]. Of course, statisticians
have also contributed to the design and analysis of these algorithms. An important
and readable source is [13].

Group theory. This is a much smaller application. It seems surprising, because
group theory (the mathematics of symmetry) seems so far from probability. How-
ever, computational group theory, as coded up in the online libraries Gap and
Magma, makes heavy use of randomized algorithms to do basic tasks such as decid-
ing whether a group (usually given as the group generated by a few permutations or
a few large matrices) is all of Sn(GLn). Is it solvable, can we find its lower central
series, normal closure, Sylow(p) subgroups, etc.? Splendid accounts of this subject
are in [47] or [80]. Bounding the running time of widely available used algorithms,
such as the meat axe or the product replacement algorithm [75], are important
open problems on the unlikely interface of group theory and probability.

Computer science (theory). The analysis of algorithms and complexity theory is
an important part of computer science. One central theme is the polynomial/non-
polynomial dichotomy. A large class of problems such as computing the permanent
of a matrix or the volume of a convex polyhedron have been proved to be # p-
complete. Theorists (Broder, Jerrum, Vazarani) have shown that while it may take
exponential time to get an exact answer to these problems, one can find provably
accurate approximations in a polynomial number of operations (in the size of the
input) provided one can find a rapidly mixing Markov chain to generate problem
instances at random. The above rough description is made precise in the readable
book [81]. This program calls for methods of bounding the running time of Markov
chains. Many clever analyses have been carried out in tough problems without
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helpful symmetries. It would take us too far afield to develop this further. Three of
my favorite papers (which will lead the reader into the heart of this rich literature)
are the analysis [63] of the hit-and-run algorithm, the analysis [52] of the problem
of approximating permanents, and the analysis [70] of knapsack problems. All of
these contain deep, original mathematical ideas which seem broadly useful. As a
caveat, recent results of Widgerson suggest a dichotomy: either randomness can
be eliminated from these algorithms or P = NP . Since nobody believes P = NP ,
there is true excitement in the air.

To close this section, I reiterate that almost none of these applications comes
with a useful running time estimate (and almost never with careful error estimates).
Also, for computer science, the applications are to computer science theory. Here
the challenge is to see if practically useful algorithms can be made from the elegant
mathematics.
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