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Preface  

Early in the 20th century, the great mathematician David Hilbert 
noticed that a number of important mathematicaJ arguments were 
structurally similar. In fact, he realized that at an appropriate level of 
generality they could be regarded as the same. This observation, and 
others like it, gave rise to a new branch of mathematics, and one of its 
central concepts was named after Hilbert. The notion of a Hilbert space 
sheds light on 80 much of modern mathematics, from number theory to 
quantum mechanics, that ifyou do not know at least the rudiments of 
Hilbert space theory then you cannot claim to be a well-educated 
mathematician. 

What, then, is a Hilbert space? In a typical university mathematics 
course it is denned as a complete inner-product space. Students 
attending such a course are expected to know, from previous courses, 
that an inner-product space is a vector space equipped with an inner 
product, and that a space is complete if every Cauchy sequence in it 
converges. Ofcourse, for those dennitions to make sense, the students 
also need to know the dennitions ofvector space, inner product, 
Cauchy sequence and convergence. To give just one of them (not the 
longest): a Cauchy sequence is a sequence Xl> X" X" .•. such that 
for every positive number té there exists an integer N such that for any 
two integers p and q greater than N the distance from xp to xq is at 
mostE. 



In short, to have any hope ofunderstanding what a Hilbert space is, you 
must learn and digest a whole hierarchy oflower-Ievel eoncepts first. 
Not surprisingly, this takes time and effort. Since the same i8 true of 
many ofthe most important mathematical ideas, there is a severe Iimit 
to what can be achieved by any book that attemp18 to offer an accessible 
introduction to mathematics, especially if it is 10 be very short. 

Instead oftrying to find a c1ever way round this difficulty, 1 have focused 
on a different barrier to mathematical communication. This one, which 
i5 more philosophical than technical, separates those who are happy 
with notions such as infinity, the square root of minus one, the twenty-
sixth dimension, and curved space from those who find them 
disturbingly paradoxical. It is possible to become comfortable with 
these ideas vvithout immersing oneself in technicalities, and 1shaH try to 
showhow. 

If this book can be said to have a message, it is that one should learn to 
think abstractly, because by doing so many phil080phical difficulties 
sim ply disappear. 1 explain in detail what 1 mean by the abstract method 
in Chapter 2. Chapter 1 concerns a more familial', and relatcd, kind of 
abstraction: the process ofdistilling the essential features from a real-
world problem, and thereby turning it into a mathematical one. These 
two chapters, and Chapter 3, in which 1 discuss what i8 meant by a 
rigOrou8 proo±; are about mathematics in general. 

Thereafter, 1 discuss more specifie topies. The last chapter is more about 
mathematicians than about mathematics and i8 therefore somewhat 
different in character from the others. 1 recommend reading Chapter 2 
before the later ones, but apart from that the book is aITanged as 
unhierarchically as possible: 1 shall not assume, towards the end of the 
book, that the reader has understood and remembered everything that 
cornes earlier. 

Very little prior knowledge is needed to read this book a British GCSE 
course or i18 equivalent should be enough - but 1 do presuppose sorne 
interest on the part of the reader rather than trying to drum it up myself. 



For this reason 1 have done without anecdotes, cartoons, exclamation 
marks, jokey chapter titles, or pictures ofthe Mandelbrot set. 1 have aJso 
avoided topics such as chaos theory and Gôdel's theorem, which have 
a hold on the public imagination out of proportion to their impact on 
CUITent mathematicaJ research, and which are in any case weil treated 
in many other books. Instead, 1 have taken more mundane topics and 
discussed them in detail in order to show how they can be understood in 
a more sophisticated way. In other words, 1 have aimed for depth rather 
than breadth, and have tried to convey the appeal of mainstream 
mathematics by letting it speak for itself. 

1 would like to thank the Clay Mathematics Institute and Princeton 
University for their support and hospitality during part of the writing of 
the book. 1 am very grateful to Gilbert Adair, Rebecca Gowers, Emily 
Gowers, Patrick Gowers, Joshua Katz, and Edmund Thomas for reading 
earlier drafts. Though they are too intelligent and weIl informed to 
count as general readers, it is reassuring to know that what 1 have 
written is comprehensible to at least sorne non-mathematicians. Their 
comments have resulted in many improvements. To Emily 1 dedicate 
this book, in the hope that it ,vil! give her a small idea ofwhat it is 1 
do aIl day. 



Chapter 1 
Models 

How to throw a stone 

Suppose that you are standing on level ground on a calm day, and 
have in your hand a stone which you would like to throw as far as 
possible. Given how hard you can throw, the most important 
decision you must make is the angle at which the stone leaves your 
hand. If this angle is too flat, then although the stone will have a 
large horizontal speed it will land quite soon and will therefore not 
have a chance to travel very far. If on the other hand you throw the 
stone too high, then it will stay in the air for a long time but without 
covering much ground in the process. Clearly sorne sort of 
compromise is needed. 

The best compromise, which can be worked out using a 
combination of Newtonian physics and sorne elementary calculus, 
turns out to be as neat as one could hope for under the 
circumstances: the direction ofthe stone as it leaves your hand 
should be upwards at an angle of 45 degrees to the horizontal. The 
same calculations show that the stone will trace out a parabolic 
curve as it flies through the air, and they tell you how fast it will 
be travelling at any given moment after it leaves your hand. 

It seems, therefore, that a combination ofscience and mathematics 
enables one to predict the entire behaviour ofthe stone trom the 



moment it is launched until the moment it lands. However, it does 
50 only ifone is prepared to make a number of simplifying 
assumptions, the main one being that the only force acting on 
the stone i5 the earth's gravity and that this force has the same 
magnitude and direction everywhere. That is not true, though, 
because it fails to take into account air resistance, the rotation ofthe 
earth, a small gravitational influence from the moon, the fact that 
the earth's gravitational field is weaker the higher you are, and the 
gradually ,changing direction of 'vertically downwards' as you move 
from one part ofthe earth's surface to another. Even ifyou accept 
the calculations, the recommendation of 45 degrees is based on 
another implicit assumption, namely that the speed of the stone as 
it leaves your hand does not depend on its direction. Again, this is 
untrue: one can throw a stone harder when the angle is flatter. 

In the light ofthese objections, sorne ofwhich are dearly more 
 serious than others, what attitude should one take to the1calculations and the predictions that follow from them? One .., 

';  approach would be to take as many ofthe objections into account as 
 possible. However, a much more sensible policy is the exact 
opposite: decide what level of aceuracy you need, and then try ta 
achieve it as simply as possible. Ifyou know from experience that a 
simplifying assumption will have only a small effect on the answer, 
then you should make that assumption. 

For example, the effect of air resistance on the stone will be fairly 
small because the stone is small, hard, and reasonably dense. 
There is not much point in complicating the calcnlations by taking 
air resistance into account when there i5 likely to be a significant 
error in the angle at which one ends up throwing the stone anyway. 
Ifyou want to take it into account, then for most purposes the 
folloVl-ing rnle of thumb is good enough: the greater the air 
resistance, the flatter you should make your angle to compensate 
for it. 

2 

What is a mathematical model? 

VVhen one examines the solution to a physical problem, it lS often, 
though not always, possible to draw a clear distinction between the 
contributions made by science and those made by mathematics. 
Scientists devise a theory, based partly on the results ofobservations 
and experiments, and partly on more general considerations such as 
simplicity and explanatory power. Mathematicians, or scientists 
doing mathematics, then investigate the purely logical 
consequences of the theory. Sometimes these are the results of 
routine calculations that predict exactly the sorts of phenomena the 
theory was designed to explain, but occasionally the predictions of a 
theory can be quite unexpected. If these are later confirmed by 
experiment, then one has impressive evidence in favour of the 
theory. 

The notion of confirming a scientific prediction is, however, 
somewhat problematic, because of the need for simplifications f 
ofthe kind l have been discussing. To take another example, a-
Newton's laws of motion and gravity imply that if you drop 
two objects from the same height then they will hit the ground 
(ifit i8 level) at the same time. This phenomenon, first pointed 
out by Galileo, is somewhat counter-intuitive. In fact, it is 
worse than counter-intuitive: ifyou try it for yourself, with, 
say, a golf bail and a table-tennis ball, you will find that the 
golfbalilands first. 80 in what sense was Galileo 
correct? 

It is, ofcourse, because ofair resistance that we do not regard this 
Uttle experiment as a refutation of Galileo's theory: experience 
shows that the theory works weIl when air resistance is small. Ifyou 
find it too convenient to let air resistance come to the rescue every 
time the predictions of Newtonian mechanics are mistaken, then 
your faith in science, and your admiration for Galileo, Vli11 be 
restored ifyou get the chance to watch a feather fall in a vacuum - it 
really does just drop as a stone would. 

3 
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Nevertheless, because scientific observations are never completely 
direct and conclusive, we need a better way to describe the 
relationship between science and mathematics. Mathematicians do 
not apply scientific theories directly to the world but rather to 
models. A model in this sense can he thought of as an imaginary, 
simplified version ofthe part of the world being studied, one in 
which exact calculations are possible. In the case ofthe stone, the 
relationship between the world and the model is something like 
the relationship between Figures land 2. 
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There are many ways of modelling a given physical situation, and 
we must use a mixture of experience and further theoreticaI 
considerations to decide what a given mode! is likely to teach us 
about the world itself. When choosing a model, one priority is to 
make its behaviour correspond closely to the actual, observed 
behaviour of the world. However, other factors, such as simplicity 
and mathematical elegance, can often be more important. Indeed, 
there are very useful models with aImost no resemblance to the 
world at aIl, as sorne of my examples will illustrate. 

Rolling a pair of dice 
If1 roll a pair ofdice and want to know how they will behave, then 
experience tells me that there are certain questions it is unrealistic 
to ask. For example, nobody could be expected to tell me the 
outcome of a given roll in advance, even if they had expensive 
technology at their disposaI and the dice were to be rolled by a 
machine. By contrast, questions ofa probabilistic nature, such as, ..1 
'How likely is it that the numbers on the dice will add up to seven?' 
can often be answered, and the answers may be useful if; tor 
example, 1 am playing backgammon for money. For the second sort 
of question, one can model the situation very sim ply by 
representing a roll of the dice as a random choice of one of the 
following thirty-six pairs of numbers. 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

The first number in each pair represents the number showing on 
the first die, and the second the number on the second. Since exactly 
six ofthe pairs consist oftwo numbers that add up to seven, the 
chances of rolling a seven are six in thirty-six, or one in six. 

5 
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One might object to this model on the grounds that the dice, 
when rolled, are obeying Newton's laws, at least to a very high 
degree of precision, so the way they land is anything but 
random: indeed, it could in principle be calculated. However, the 
phrase 'in principle' is being overworked here, since the 
calculations would be extraordinarily complicated, and would 
need to be based on more precise information about the shape, 
composition, initial velocities, and rotations of the dice than 
could ever be measured in practice. Because ofthis, there is no 
advantage whatsoever in using sorne more complicated 
deterministic model. 

Predicting population growth 
The 'softer' sciences, such as biology and economics, are full of 
mathematical models that are vastly simpler than the phenomena 

 they represent, or even deliberately inaccurate in certain ways, but 
 nevertheless useful and illuminating. To take a biological example 

"  of great economic importance, let us imagine that we wish to 
::E  predict the population of a country in 20 years' time. One very 

simple model we might use represents the entire country as a pair of 
numbers (t, P(t». Here, t represents the time and pet) stands for the 
size ofthe population at time t. In addition, we have two numbers, b 
and d, to represent birth and death rates. These are defined to be 
the number ofbirths and deaths per year, as a proportion of the 
population. 

Suppose we know that the population at the beginning of the year 
2002 is P. According to the modeljust defined, the number of 
births and deaths during the year will be bP and dP respectively, 
so the population at the beginning of 2003 will be 
P + bP - dP = (1 + b - d)P. This argument works for any year, so we 
have the formula pen + 1) = (1 + b - d)P(n), meaning that the 
population at the beginning ofyear n + 1 is (1 + b - d) times 
the population at the beginning ofyear n. In other words, each year 
the population multiplies by (1 + b - d). It follows that in 20 years 

6 

it multiplies by (1 + b - d)"o, which gives an answer to our original 
question. 

Even this basic model is good enough to persuade us that if the 
birth rate is significantly higher than the death rate, then the 
population will grow extremely rapidly. However, it is also 
unrealistic in ways that can make its predictions very inaccurate. 
For example, the assumption that birth and death rates will 
remain the same for 20 years is not very plausible, since in the 
past they have often been affected by social changes and political 
events such as improvements in medicine, new diseases, increases 
in the average age at which women start to have children, tax 
incentives, and occasionallarge-scale wars. Another reason to 
expect birth and death rates to vary over time is that the ages of 
people in the country may be distributed rather unevenly. For 
example, if there has been a baby boom 15 years earlier, then 
there is sorne reason to expect the birth rate to rise in 10 to 
15 years' time. f 

!fr 
It is therefore tempting to complicate the model by introducing 
other factors. One could have birth and death rates b(t) and d(t) 
that varied over time. Instead of a single number pet) representing 
the size of the population, one might also like to know how many 
people there are in various age groups. It would also be helpful to 
know as much as possible about social attitudes and behaviour in 
these age groups in order to predict what future birth and death 
rates are likely to be. Obtaining this sort of statistical information is 
expensive and difficult, but the information obtained can greatly 
improve the accuracy ofone's predictions. For this reason, no single 
model stands out as better than aIl others. As for social and 
political changes, it is impossible to say with any certainty what 
they will be. Therefore the most that one can reasonably ask of any 
model is predictions of a conditional kind: that is, ones that tell us 
what the effects of social and political changes will be if they 
happen. 

7 
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The behaviour of gases 

According to the kinetic theory ofgases, introdueed by Daniel 
Bernoulli in 1738 and developed by Maxwell, Boltzmann, and 
others in the second half of the 19th eentury, a gas is made up of 
moving molecules, and many of its properties, such as 
temperature and pressure, are statistical properties of those 
molecules. Temperature, for example, corresponds ta their average 
speed. 

With this idea in mind, let us try to devise a model of a gas 
contained in a cubical box. The box should ofcourse be represented 
bya cube (that is, a mathematical rather than physical one), and 
sinee the molecules are very amall it is natural to represent them by 
points in the cube. These points are supposed to move, so we must 
decide on the rules that govern how they move. At this point we 

i  have to make sorne choices. .. 
If there were just one molecule in the box, then there would be an 

:I!  obvious rule: it travels at constant speed, and bounces off the waHs 
of the box when it hits them. The simplest conceivable way to 
generalize this model is then to take N molecules, where N is sorne 
large number, and assume that they all behave this way, with 
absolutely no interaction between them. In arder to get the 
N-molecule model started, we have to choose initial positions 
and velocities for the molecules, or rather the points representing 
them. A good way of doing this is ta make the choice randomly, 
since we would expect that at any given time the molecules in a 
real gas would be spread out and moving in many directions. 

It is not hard to say what is meant by a random point in the cube, or 
a random direction, but it is less clear how ta choose a speed 
randomly, since speed can take any value from 0 to infinity. To avoid 
this difficulty, let us make the physically implausible assumption 
that aIl the molecules are moving at the same speed, and that it is 
only the initial positions and directions that are chosen randomly. A 
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two-dimensional version of the resulting model is illustrated in 
Figure 3 . 

The assumption that our N molecules move entirely independently 
of one another is quite definitely an oversimplification. For 
example, it means that there is no hope ofusing this model to 
understand why a gas becomes a liquid at sufficiently low 
temperatures: ifyou slow down the points in the model you get the 
same model, but running more slowly. Nevertheless, it does explain 
much ofthe behaviour of real gases. For example, imagine what 
would happen ifwe were gradually to shrink the box. The molecules 
would continue to move at the same speed, but now, because the 
box was smaller, they would hit the waHs more often and there 
would be less wall to hit. For these two reasons, the number of 
collisions per second in any given area of wall would be greater. 
These collisions account for the pressure that a gas exerts, sa we 
can conclude that ifyou squeeze agas into a smaIler volume, then 
its pressure is likely to increase as is confirmed by observation. A 
similar argument explains why, ifyou increase the temperature of 
agas without increasing its volume, its pressure also increases. 
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And it is not tao hard to work out what the numerical , wm,how. Ittu= out that "''Y ,imp!, mode], of'Y'''= of 
relationships between pressure, temperature, and volume j interacting particles behave in a fascinating way and give rise to 
should be. 

The above model is roughly that of Bernoulli. One of Maxwell's 
achievements was ta discover an elegant theoretical argument 
that salves the problem ofhow to choose the initial speeds more 
realistically. Ta understand this, let us begin by dropping our 
assumption that the molecules do not interact. Instead, we shall 
assume that from time to time they collide, like a pair oftiny billiard 
balls, after which they go off at other speeds and in other directions 
that are subject ta the laws of conservation of energy and 
momentum but otherwise random. Ofcourse, it is not easy to see 
how they will do this if they are single points occupying no volume, 
but this part of the argument is needed only as an informal 
justification for sorne sort of randomness in the speeds and 

el directions of the molecules. Ma.xwell's two very plausible 

1assumptions about the nature ofthis randomness were that it 
should not change over time and that it should not distinguish i 

:E  between one direction and another. Roughly speaking, the second 
of these assumptions means that ifdJ and d2 are two directions and 
8 is a certain speed, then the chances that a partic1e is travelling at 
speed 8 in direction li, are the same as the chances that it is 
travelling at speed 8 in direction d2 • Surprisingly, these two 
assumptions are enough to determine exactly how the velocities 
should be distributed. That is, they tell us that ifwe want to choose 
the velocities randomly, then there is only one natural way ta do it. 
(They should be assigned according to the normal distribution. This 
is the distribution that produces the famous 'bell curve', which 
occurs in a large number ofdifferent contexts, bath mathematical 
and experimental.) 

Once we have chosen the velocities, we can again forget an about 
interactions between the molecules. As a result, this slightly 
improved model shares many of the defects ofthe first one. In order 
ta remedy them, there is no choice but to model the interactions 
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extremely difficult, indeed mostly unsolved, mathematical 
problems. 

Modelling brains and computers 
A computer can also be thought ofas a collection of many simple 
parts that interact with one another, and largely for this reason 
theoretical computer science is also full of important unsolved 
problems. A good example of the sort ofquestion one might like to 
answer is the following. Suppose that somebody chooses two prime 
numbers p and q, multiplies them together and tells you the answer 
pq. You cau then work out what p and q are by taking every prime 
number in turn and seeingwhether it goes exactly into pq. For 
example, ifyou are presented with the number 91, you can quickly 
establish that it is not a multiple of 2, 3, or 5, and then that it 
equals 7 x 13. f 

;. 
If, however, p and q are very large with 200 digits each, say - then 
this process oftrial and error takes an unimaginably long time, even 
with the help ofa powerful computer. (If you want to get a feel for 
the difficulty, try finding two prime numbers that multiply to give 
6901 and another two that give 280123.) On the other hand, it is not 
inconceivable that there is a much c1everer way to approach the 
problem, one that might be used as the basis for a computer 
program that does not take too long to run. If such a method could 
be found, it would allow one to break the codes on which most 
modern security systems are based, on the Internet and e1sewhere, 
since the difficulty ofdeciphering these codes depends on the 
difficulty of factorizing large numbers. It would therefore be 
reassuring if there were sorne way ofshowing that a quick, efficient 
procedure for calculatingp and q from their product pq does not 
exist. Unfortunately, while computers continually surprise us with 
what they can be used for, almost nothing is known about what they 
cannot do. 

11 



And it is not tao hard to work out what the numerical , wm,how. Ittu= out that "''Y ,imp!, mode], of'Y'''= of 
relationships between pressure, temperature, and volume j interacting particles behave in a fascinating way and give rise to 
should be. 

The above model is roughly that of Bernoulli. One of Maxwell's 
achievements was ta discover an elegant theoretical argument 
that salves the problem ofhow to choose the initial speeds more 
realistically. Ta understand this, let us begin by dropping our 
assumption that the molecules do not interact. Instead, we shall 
assume that from time to time they collide, like a pair oftiny billiard 
balls, after which they go off at other speeds and in other directions 
that are subject ta the laws of conservation of energy and 
momentum but otherwise random. Ofcourse, it is not easy to see 
how they will do this if they are single points occupying no volume, 
but this part of the argument is needed only as an informal 
justification for sorne sort of randomness in the speeds and 

el directions of the molecules. Ma.xwell's two very plausible 

1assumptions about the nature ofthis randomness were that it 
should not change over time and that it should not distinguish i 

:E  between one direction and another. Roughly speaking, the second 
of these assumptions means that ifdJ and d2 are two directions and 
8 is a certain speed, then the chances that a partic1e is travelling at 
speed 8 in direction li, are the same as the chances that it is 
travelling at speed 8 in direction d2 • Surprisingly, these two 
assumptions are enough to determine exactly how the velocities 
should be distributed. That is, they tell us that ifwe want to choose 
the velocities randomly, then there is only one natural way ta do it. 
(They should be assigned according to the normal distribution. This 
is the distribution that produces the famous 'bell curve', which 
occurs in a large number ofdifferent contexts, bath mathematical 
and experimental.) 

Once we have chosen the velocities, we can again forget an about 
interactions between the molecules. As a result, this slightly 
improved model shares many of the defects ofthe first one. In order 
ta remedy them, there is no choice but to model the interactions 

10 

extremely difficult, indeed mostly unsolved, mathematical 
problems. 

Modelling brains and computers 
A computer can also be thought ofas a collection of many simple 
parts that interact with one another, and largely for this reason 
theoretical computer science is also full of important unsolved 
problems. A good example of the sort ofquestion one might like to 
answer is the following. Suppose that somebody chooses two prime 
numbers p and q, multiplies them together and tells you the answer 
pq. You cau then work out what p and q are by taking every prime 
number in turn and seeingwhether it goes exactly into pq. For 
example, ifyou are presented with the number 91, you can quickly 
establish that it is not a multiple of 2, 3, or 5, and then that it 
equals 7 x 13. f 

;. 
If, however, p and q are very large with 200 digits each, say - then 
this process oftrial and error takes an unimaginably long time, even 
with the help ofa powerful computer. (If you want to get a feel for 
the difficulty, try finding two prime numbers that multiply to give 
6901 and another two that give 280123.) On the other hand, it is not 
inconceivable that there is a much c1everer way to approach the 
problem, one that might be used as the basis for a computer 
program that does not take too long to run. If such a method could 
be found, it would allow one to break the codes on which most 
modern security systems are based, on the Internet and e1sewhere, 
since the difficulty ofdeciphering these codes depends on the 
difficulty of factorizing large numbers. It would therefore be 
reassuring if there were sorne way ofshowing that a quick, efficient 
procedure for calculatingp and q from their product pq does not 
exist. Unfortunately, while computers continually surprise us with 
what they can be used for, almost nothing is known about what they 
cannot do. 

11 



o 

4. A primitive computer program 

Before one can begin to think about this problem one must find 
sorne way of representing a computer mathematically, and as 
simply as possible. Figure 4 shows one of the best ways of doing 
this. It consists oflayers ofnodes that are linked to one another by 
tines that are called edges. Into the top layer goes the 'input', which 
is a sequence of Os and ls, and out ofthe bottom layer cornes the 
'output', which is another sequence of Os and ls. The nodes are of 
three kinds, called AND, OR, and NOT gates. Each of these gates 
receives sorne Os and ls from the edges that enter it from aoove. 
Depending on what it receives, it then sends out Os or ls itself, 
according to the following simple rules: ifan AND gate receives 
nothing but 18 then it sends out ls, and otherwise it sends out Os; if 
an OR gate receives nothing but Os then it sends out Os, and 
otherwise it sends out ls; only one edge is allowed to enter a NOT 
gate from above, and it sends out 15 if it receives a 0 and Os if it 
receive8 a 1. 

An array ofgates linked by edges is called a circuit, and what 1 f 
have described is the circuit model ofcomputation. The reason i 
'computation' is an appropriate word is that a circuit can be thought 
of as taking one sequence of Os and 18 and transforming it into 
another, according to sorne predetermined rules which may, if the 
circuit is large, be very complicated. This is also what computers do, 
although they translate these sequences out ofand into formats that 
we can understand, such as high-Ievel programming languages, 
windows, icons, and so on. There turns out to be a fairly simple way 
(from a theoretical point ofview it would be a nightmare to do in 
practice) ofconverting any computer program into a circuit that 
transforms Dl-sequences according to exactIy the same rules. 
Moreover, important characteristics ofcomputer programs have 
their counterparts in the resulting circuits. 

In particular, the number ofnodes in the circuit corresponds to the 
length oftime the computer program takes to run. Therefore, ifone 
can show that a certain way of transforming Dl-sequences needs a 
very large circuit, then one has also shown that it needs a computer 
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program that runs for a very long time. The advantage ofusing the 
circuit model over analysing computers directly is that, from the 
mathematical point ofview, circuits are simpler, more natural, and 
easier to think about. 

A smaU modification ta the circuit modellcads to a useful model of 
the brain. Now, instead ofos and 1s, one has signals ofvarying 
strengths that ean be rcpresentcd as numbers between 0 and 1. 
The gates, which correspond ta neurons, or brain cens, are also 
different, but they still behave in a very simple way. Each one 
receives sorne signals from other gates. If the total strength ofthese 
signals that is, the sum ofall the corresponding numbers - is large 
enough, then the gate sends out its own signais ofcertain strengths. 
Otherwise, it does not. This corresponds to the decision of a neuron 
whether or not to 'tire'. 

It may seem hard ta bclieve that this model could capture the full 
'DE'" complexity of the brain. However, that is partly bccause 1 have said j nothing about how many gates there should be or how thcy should 

be arranged. A typical human brain contains about 100 billion 
neurons arrangcd in a very complieatcd way, and in the present 
state ofknowledge about the brain it is not possible to say aIl that 
much more, at least about the fine detail. Nevertheless, the model 
provides a useful theoretieal framework for thinking about how the 
brain might work, and it has allowed people to simulate certain 
sorts ofbrain-like behaviour. 

Colouring maps and drawing up timetables 
Suppose that you are designing a map that is divided into regions, 
and you wish to choose colours for the regions. You would like to use 
as few colours as possible, but do not ,vish ta give two adjacent 
regions the same colour. Now suppose that you are drawing up the 
timetable for a university course that is divided into modules. The 
number of possible times for lectures is limited, sa sorne modules 
will have ta clash with others. You have a list ofwhich students are 
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taking which modules, and would like to choose the times in such 
a way that two modules clash only when there is nobody taking 
both. 

These two problems appear to be quite different, but an appropriate 
choice ofmodel shows that from the mathematical point ofview 
they are the same. In both cases there are sorne objects (countries, 
modules) to which something must be assigned (colours, times). 
Sorne pairs of objects are incompatible (neighbouring countries, 
modules that must not clash) in the sense that they are not allowed 
to receive the same assignment. In neither problem do we really 
care what the objects are or what is being assigned to them, so we 
mayas weIl just represent them as points. To show which pairs of 
points are incompatible we can link them with lines. A collection 
ofpoints, sorne ofwhich are joined by Hnes, is a mathematical 
structure known as a graph. Figure 5 gives a simple example. 
It is customary to caU the points in a graph vertices, and the 
lines edges. 

5. A graph with 10 vertices and 15 edges 

Once we have represented the problems in this way, our task in both 
cases is to divide the vertices into a small number of groups in such 
a way that no group contains two vertices linked by an edge. (The 
graph in Fignre 5 ean be divided into three such groups, but not 
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into two.) This illustrates another very good reason for making 
models as simple as possible: ifyou are lucky, the same model can 
be used to study many different phenomena at once. 

Various meanings of the word 'abstract' 
When devising a model, one tries to ignore as much as possible 
about the phenomenon under consideration, abstracting from it 
only those features that are essential to understanding its 
behaviour. In the examples l have discussed, stones were reduced to 
single points, the entire population of a country to one number, the 
brain to a network of gates obeying very simple mathematical rules, 
and the interactions between molecules to nothing at aIl. The 
resulting mathematical structures were abstract representations of 
the concrete situations being modelled. 

el  These are two senses in which mathematics is an abstract subject: it 1abstracts the important features from a problem and it deals with 
 objects that are not concrete and tangible. The next chapter will 

::!  discuss a third, deeper sense of abstraction in mathematics, of 
which the example ofthe previous section has already given us 
sorne idea. A graph is a very flexible model with many uses. 
However, when one studies graphs, there is no need to bear these 
uses in mind: it does not matter whether the points represent 
regions, lectures, or something quite different again. A graph 
theorist can leave behind the real world entirely and enter the realm 
of pure abstraction. 
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Chapter 2 
Numbers and abstraction 

The abstract method 

A few years ago, a review in the Times Literary Supplement opened 
with the following paragraph: 

Given that 0 x 0 =0 and 1 x 1 =l, it follows that there are numbers 
that are their own squares. But then it follows in turn that there are 
numbers. In a single step of artless simplicity, we seem to have 
advanced from a piece of elementary arithmetic to a startling and 
highly controversial philosophical conclusion: that numbers exist. 
You would have thought that it should have been more difficult. 

A. W. Moore reviewing Realistic Rationalism, 
by Jerrold J. Katz, in the T.L.S., llth September 1998. 

This argument can be criticized in many ways, and it is unlikely that 
anybody takes it seriously, including the reviewer. However, there 
certainly are philosophers who take seriously the question of 
whether numbers exist, and this distinguishes them from 
mathematicians, who either find it obvious that numbers exist or do 
not understand what is being asked. The main purpose of this 
chapter is to explain why it is that mathematicians can, and even 
should, happily ignore this seemingly fundamental question. 

The absurdity of the 'artlessly simple' argument for the existence of 
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