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Dominant Eigenvalue and Principal Component
Analysis

B Dominant Eigenvalue

In Section 8.2 we discussed and illustrated the spectral decomposition of a sym-
metric matrix. We showed that if A is an n x n symmetric matrix, then we can
express A as a linear combination of matrices of rank one, using the eigenvalues
of A and associated eigenvectors as follows. Let A1, A, ..., A, be the eigenvalues
of A and x|, X2,...,X, a set of associated orthonormal eigenvectors. Then the
spectral decomposition of A is given by

A = XiX] + AXoX) 4o Ax,x] (1)
Furthermore, if we label the eigenvalues so that
I)\ll = MZI =2 l)\nl,

then we can construct approximations to the matrix A, using partial sums of the
spectral decomposition. We illustrated such approximations by using matrices of
zeros and ones that corresponded to pictures represented by matrices of black and
white blocks. As remarked in Section 8.2, the terms using eigenvalues of largest
magnitude in the partial sums in (1) contributed a large part of the “information”
represented by the matrix A. In this section we investigate two other situations
where the largest eigenvalue and its corresponding eigenvector can supply valuable
information.

If A is areal n x n matrix with real eigenvalues A, A,, ..., A,, then an eigenvalue
of largest magnitude is called a dominant eigenvalue of A.

Let
9 6 —14
A= | -2 | 2
6 6 —11

The eigenvalues of A are 3, 1, and —5 (verify). Thus the dominant eigenvalue of
A is =5, since |[=5| > 1 and |-5| > 3. [

Remark Observe that }; is a dominant eigenvalue of A, provided that | ;| >
Ail,i=1,2,....,j—1Lj+1,....,n. A matrix can have more than one dominant

eigenvalue. For example, the matrix

4 2 -1
0o -2 7
0O 0 -4

has both 4 and —4 as dominant eigenvalues.
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Let A be areal n x n matrix with real eigenvalues A, 1,, ..
|Al, i = 2,...,n. Then A has a unique dom_inant eigenvalye, Further,
suppose that A is diagonalizable with associated lmgarly independent eigenvénore‘
X[, X2, ..., X,. Hence S = {x;, Xz, ..., X, } is a basis for R", and every VectOrCto-rS
R" is expressible as a linear combination of the vectors in S. Let Xin

ns Where )\11 N

X=cCX|+Xo+ -+ X, withep #0

and compute the sequence of vectors Ax, A’X, Adx, ..., Ak

X, .... We Obtaip the
following:

AX = c1AX) + 0 AXy + -+ G AX, = CiAX) + QAaXa + - o x,
AXX = ;M AX) 4 CoMAXy + - - F CpAnAX, = CIATX) + C2A3Xg + - + ey,
A%x = ;A AX) + M3 AX) + -+ c,,)»iAx,, = c1A3x; + CoAXy + - + ek,

¢ k
A*x = o) M%) + eaddxo + -+ caikx,

We have

k k A X
A'x = )] ("lx1+C2Fx2+"'+anXn
1 1

k k
=M (caxi+ e a X2+ +cn A X |,
: A M

A;
and since A, is the dominant eigenvalue of A, ’XL‘ < 1 fori > 1. Hence, a
1

k — o0, it follows that
Afx — akeix. @

Using this result, we can make the following observations: For a real diagonal-

izable matrix with all real eigenvalues and a unique dominant eigenvalue Ay, WE
have

(a) A*x approaches the zero vector for any vector x, provided that || < 1.
(b) The sequence of vectors A*x does not converge, provided that [A;| > 1.

.. . . or
(c) If |x;| = 1, then the limit of the sequence of vectors AXx is an eigenvect
associated with A,.

In certain iterative processes in numerical linear algebra, sequences of Ve??;:
of the form A*x arise frequently. In order to determine the convergencé © i
sequence, it is important to determine whether or not the dominant eigenVﬁ(lj‘;fer_
smaller than 1. Rather than compute the eigenvalues, it is often easier ©

. i ) . - e Suc
mine an upper bound on the dominant eigenvalue. We next investigate on
approach.
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In the SUP[ZIementary Exercises 28-33 in Chapter 5 we defined the 1-norm of
avectorxin R" as the sum of the absolute values of its entries; that is,

Xl = il + [x2l + - -+ + [xal.

For an n X n matrix A, we extend this definition and define the 1-norm of the
matrix A tq be the maximum of the I-norms of its columns. We denote the 1-norm
of the matrix A by ||A|;, and it follows that

[Allr =" max {[col;(A)}.
Let
9 6 —14
A=| =2 1 2
6 6 -—11
as in Example 1. It follows that ||A||; = max{17, 13,27} = 27. L

For an n x n matrix A, the absolute value of the dominant eigenvalue of A is less
than or equal to || A||,.

Proof

Let x be any n-vector. Then the product Ax can be expressed as a linear combina-
tion of the columns of A in the form

Ax = xjcol;(A) + xacolp(A) + - - - + x,c0l,(A).
We proceed by using properties of a norm:

|AX|[l; = [lx;jcol;(A) + xzc0l2(A) + - - - + x,c0l, (A) ]|y
(Compute the 1-norm of each side.)

< llxicoli (A) 1 + llx2cola(A)[l1 + - - - + llxpcol, (A) Iy
(Use the triangle inequality of the 1-norm.)

= |xilllcoli (Al + |x2fllcola(A)y + - - - + |xalllcol, (A) Iy
(Use the scalar multiple of a norm.)

< lxilllAlly + |x2fllAlly 4 - - - + [xa [l Ally
(Use [lcolj (Al < |Allx-)

= lIxll Al

Next, suppose that X is the eigenvector corresponding to the dominant eigenvalue
A of A and recall that Ax = Ax. Then we have

IAX|[; = 1Al = [AllIxl < IxI[[AlS
and since x is an eigenvector, we have [|x||; # 0, so
Al < Al

Hence the absolute value of the dominant eigenvalue is “bounded above” by the
matrix 1-norm of A. =




9 6 -—14

A=| =2 1 2
6 6 —II

|
|
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as in Example 1. Then
|dominant eigenvalue of A| < ||A|l; = max{17, 13,27} = 27.

From Example 1, we know that [dominant eigenvalue of A| = 5. ]

Theorem 8.4 If ||A||, < 1, then the sequence of vectors A“x approaches the zero vector for any
vector X.

Proof
Exercise 9. [ |

In Section 8.1 we saw sequences of vectors of the form 7"x that arise in the
analysis of Markov processes. If T is a transition matrix (also called a Markov
matrix), then ||T||; = 1. Then from Theorem 8.3 we know that the absolute value
of the dominant eigenvalue of T is less than or equal to 1. However, we have the
following stronger result:

Theorem 8.5 If 7 is a transition matrix of a Markov process, then the dominant eigenvalue of T
is 1.

Proof

Let x be the n-vector of all ones. Then T7x = x (verify), so 1 is an eigenvalue
of TT. Since a matrix and its transpose have the same eigenvalues, . = 1 is
also an eigenvalue of 7. Now by Theorem 8.3 and the statement in the paragraph

preceding this theorem, we conclude that the dominant eigenvalue of the transition
matrix 7 is 1. |

The preceding results about the dominant eigenvalue were very algebraic in

nature. We now turn to a graphical look at the effect of the dominant eigenvalue
and an associated eigenvector.

From (2) we see that the sequence of vectors Ax, A%x, A%x, ... approachesa
scalar multiple of an eigenvector associated with the dominant eigenvalue. Geo-
metrically, we can say that the sequence of vectors Ax, A’x, A%x, ... approaches

a line in n-space that is parallel to an eigenvector associated with the dominant
eigenvalue. Example 4 illustrates this observation in R2.

m Let L be a linear transformation from R? to R? that is represented by the matrix
7 =2
A =
i

with respect to the natural basis for R, For a 2-vector x we compute the terms
A™, k=1,2,....7. Since we are interested in the direction of this set of vector’
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. 2 . . . . ~
in R and for ease in displaying these vectors in the plane R?, we first scale each
of the vectors A*x to be a unit vector. Setting

«= (03]

and computing the set of vectors, we get the following:

X  Ax A%x A3x A%x ASx A®x Ax

0.2 02941 0.0688 —0.7654 —0.9397 —0.8209 —0.7667 —0.7402
0.5 0.9558 0.9976 0.6436 —0.3419 —-0.5711 —0.6420 —0.6724

Here, we have shown only four decimal digits. Figure 8.8 shows these vectors in
R?, where X is labeled with 0 and the vectors A*x are labeled with the value of .
[

0.8
0.6

— l 1 1 1

-1 -0.5 0 0.5 1

An eigenvector associated with a dominant eigenvalue is shown as a dashed
line segment. The choice of the vector x is almost arbitrary, in the sense that
X cannot be an eigenvector associated with an eigenvalue that is not a dominant
eigenvalue, since in that case the sequence A*x would always be in the direction

of that eigenvector.

For the linear transformation in Example 4, we compute successive images of
the unit circle; that is, A% x (unit circle). (See Example 5 of Section 1.7 for a
special case.) The first image is an ellipse, and so are the successive images for
k = 2,3,.... Figure 8.9 displays five images (where each point displayed in the
graphs is the terminal point of a vector that has been scaled to be a unit vector in
R?), and again we see the alignment of the images in the direction of an eigenvector
associated with the dominant eigenvalue. This eigenvector is shown as a dashed

line segment. =
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FIGURE 8.9
The sequence of vectors Ax, A’x, A3x, ... also forms the basis for the nu-

merical method called the power method for estimating the dominant eigenvalue
of a matrix A. Details of this method can be found in D. R. Hill and B. Kolman,
Modern Matrix Algebra, Upper Saddle River, NJ: Prentice Hall, 2001, as well as
in numerical analysis and numerical linear algebra texts.

B Principal Component Analysis

The second application that involves the dominant eigenvalue and its eigenvector is
taken from applied multivariate statistics and is called principal component anal-
ysis, often abbreviated PCA. To provide a foundation for this topic, we briefly dis-
cuss some selected terminology from statistics and state some results that involve
a matrix that is useful in statistical analysis.

Multivariate statistics concerns the analysis of data in which several variables
are measured on a number of subjects, patients, objects, items, or other entities of
interest. The goal of the analysis is to understand the relationships between the
variables: how they vary separately, how they vary together, and how to develop
an algebraic model that expresses the interrelationships of the variables. ‘

The sets of observations of the variables, the data, are represented by a matrix.
Let x; indicate the particular value of the kth variable that is observed on the
jth item. We let n be the number of items being observed and p the number
of variables measured. Such data are organized and represented by a rectangular
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matrix X given by

X1 X2 e X vt Xip
X210 X2 v X vt X2p
X = ,
le sz “ e ‘xjk “ e x]p
[ Xnl Xp2 0 Xpk vt Xpp |

a multivariate data matrix. The matrix X contains all the observations on all of
the variables. Each column represents the data for a different variable, and lin-
ear combinations of the set of observations are formed by the matrix product Xc,
where ¢ is a p x 1 matrix. Useful algebraic models are derived in this way by im-
posing some optimization criteria for the selection of the entries of the coefficient
vector C.

In a single-variable case where the matrix X is n x 1, such as exam scores, the
data are often summarized by calculating the arithmetic average, or sample mean,
and a measure of spread, or variation. Such summary calculations are referred to
as descriptive statistics. In this case, for

[ 1]
X2
X = .
Xn |
the
l n
sample mean =X = — ) x;
n -
and the

1
. , 1¢ .
sample variance = s~ = — E (x; —Xx)°.
n 4
J=1

In addition, the square root of the sample variance is known as the sample stan-
dard deviation.

If the matrix

X=[97 92 90 87 85 83 8 78 72 71 70 65]

is the set of scores out of 100 for an exam in linear algebra, then the associated
descriptive statistics are ¥ ~ 81, s? 2 90.4, and the standard deviation s ~ 9.5. W
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These descriptive statistics are also applied to the set of observations of each
of the variables in a multivariate data matrix. We next define these, together wiy,
statistics that provide a measure of the relationship between pairs of variables:

] n
Sample mean for the kth variable = x;, = . Z Xjk, k=1,2,...,p.
j=1
1 & —
Sample variance for the kth variable = s} = - Z(X/k -X)% k=1,2, 1
j=1

Remark The sample variance is often defined with a divisor of n — 1 rather than
n, for theoretical reasons, especially in the case where n, the number of samples,
is small. In many multivariate statistics texts, there is a notational convention
employed to distinguish between the two versions. For simplicity in our brief
excursion into multivariate statistics, we will use the expression given previously,

Presently, we shall introduce a matrix which contains statistics that relate pairs
of variables. For convenience of matrix notation, we shall use the alternative nota-
tion sy, for the variance of the kth variable; that is,

1 & _
skk=sf=;Z(xjk—xk)2, k=1,2,...,p.
j=I

A measure of the linear association between a pair of variables is provided by
the notion of sample covariance. The measure of association between the ith and
kth variables in the multivariate data matrix X is given by

n
Sample covariance = s;;, = l Z(xj,- —Xi)(xjx —Xp), i
n4 k=12,...,p,

which is the average product of the deviations from their respective sample means.
It follows that s;; = sy;, for all i and k, and that for i = k, the sample covariance
is just the variance, s,f = Sk

We next organize the descriptive statistics associated with a multivariate data
matrix into matrices:

X
. _ X
Matrix of sample means = X =

Xp
Sie Sz o Sip
. . . S21 S22 v S

Matrix of sample variances and covariances = §,, =

Spt Sp2 0 Spp

The matrix S, is a symmetric matrix whose diagonal entries are the sample vari-
ances and the subscript n is a notational device to remind us that the divisor n Was
used to compute the variances and covariances. The matrix S, is often called the
covariance matrix, for simplicity.
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A selection of six receipts from a supermarket was collected to investigate the
nature of food sales. On each receipt was the cost of the purchases and the number
of items purchased. Let the first variable be the cost of the purchases rounded
to whole dollars, and the second variable the number of items purchased. The
corresponding multivariate data matrix is

39 217
59 28
18 10
X=12 13
14 13
[ 22 10 ]

Determine the sample statistics given previously, recording numerical values to
one decimal place and using this approximation in subsequent calculations.

Solution
We find that the sample means are

X~ 288 and x,~ 15.8,

and thus we take the matrix of sample means as
<= 28.8
1158 ]

s11 ~243.1 and sy X 43.1,

The variances are

while the covariances are
S12 = 521 = 97.8.

Hence we take the covariance matrix as

: 7P
5,12[2431 9 8]_

97.8 43.1 -

In a more general setting the multivariate data matrix X is a matrix whose
entries are random variables. In this setting the matrices of descriptive statistics
are computed using probability distributions and expected value. We shall not
consider this case, but just note that the vector of means and the covariance matrix
can be computed in an analogous fashion. In particular, the covariance matrix is
symmetric, as it is for the “sample” case illustrated previously.

We now state several results that indicate how to use information about the
covariance matrix to define a set of new variables. These new variables are linear
combinations of the original variables represented by the columns of the data ma-
trix X. The technique is called principal component analysis, PCA, and is among
the oldest and most widely used of multivariate techniques. The new variables are
derived in decreasing order of importance so that the first, ca.lle.d thg first pripci-
pal component, accounts for as much as possible of the variation in the original
data. The second new variable, called the second principal component, accounts
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for another, but smaller, portion of the variation, and so on. For a situatjop involy
; ing p variables, p components are required to account for all the Variation, bu;
: often, much of the variation can be accounted for by a small number of Principy|
| components. Thus, PCA has as its goals the interpretation of the variation gng datg
! reduction.

The description of PCA given previously is analogous to the use of the spec-
tral decomposition of a symmetric matrix in the application to symmetric images
discussed in Section 8.2. In fact, we use the eigenvalues and associated orthonor.
mal eigenvectors of the covariance matrix S, to construct the principal Component
and derive information about them. We have the following result, which we sty
without proof:

Theorem 8.6 Let S, be the p X p covariance matrix associated with the multivariate data matrix
X. Let the eigenvalues of S, be A, j =1,2,..., p.whered; > 3> ... > by >
0, and let the associated orthonormal eigenvectors be u;, j = 1,2,..., p. They
the ith principal component y; is given by the linear combination of the columps
of X, where the coefficients are the entries of the eigenvector u;; that is,

y; = ith principal component = Xu;.

In addition, the variance of y; is A;, and the covariance of y; and y;, i # k, is
zero. (If some of the eigenvalues are repeated, then the choices of the associated
eigenvectors are not unique; hence the principal components are not unique.) N

P
Theorem 8.7 Under the hypotheses of Theorem 8.6, the total variance of X given by Zsi,- is
i=l
the same as the sum of the eigenvalues of the covariance matrix S,,.

Proof
Exercise 18. n

This result implies that

Proportion of the

total variance due _ Ak g
to the kth principal | — 3, Fhat o tA, k=1,2,....p. O
component

Thus we see that if A; > A, then A; is the dominant eigenvalue of the covarianc®
matrix. Hence the first principal component is a new variable that “explains,” of
accounts for, more of the variation than any other principal component. If 2 large
percentage of the total variance for a data matrix with a large number p of col'umnS
can be attributed to the first few principal components, then these new vanablef
can replace the original p variables without significant loss of information. Thus
we can achieve a significant reduction in data.
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Compute the first principal component for the data matrix X given in Example 7.
Solution

The covariance matrix S, is computed in Example 7, so we determine its eigen-
values and associated orthonormal eigenvectors. (Here, we record the numerical
values to only four decimal places.) We obtain the eigenvalues

A1 =282.9744 and X, = 3.2256

and associated eigenvectors

o _ [0.9260 4w o[ 03775
103775 ™ ™= _g9260 |-

Then, using Theorem 8.7, we find that the first principal component is
¥1 = 0.9260col, (X) + 0.3775col»(X),

and it follows that y; accounts for the proportion

Al

(about 98.9%)
A+ A

of the total variance of X (verify). n

Suppose that we have a multivariate data matrix X with three columns, which we
denote as X, X,, and X3, and the covariance matrix (recording values to only four

decimal places) is
3.6270 2.5440 O

Sp = 125440 6.8070 O
0 0 1

Determine the principal components yj, y», and y3.

Solution
We find that the eigenvalues and associated orthonormal eigenvectors are

A =82170, A, =22170, and A;z=1,

0.4848 —0.8746 0
u =|[08746 |, w = 04848 |, and uw3= |0
0 0 1

Thus the principal components are

y, = 0.4848x, + 0.8746x,
Yy = —0.8746)(1 + 0.4848X2

Then it follows from (3) that y; accounts for 78.61% of the total variance, while
y, and ys account for 19.39% and 8.75%, respectively. |
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There is much more information concerning the influence of and relationsh;
between variables that can be derived from the computations associated with PCA
For more information on PCA, see the references below.

We now make several observations about the geometric nature of PCA. The
fact that the covariance matrix §,, is symmetric means that we can find an orthog.
onal matrix U consisting of eigenvectors of S, such that U”'S,U = D, adlagona]
matrix. The geometric consequence of this result is that the p original variables g
rotated to p new orthogonal variables, called the principal components. Moreover
these principal components are linear combinations of the original variables. (The
orthogonality follows from the fact that the covariance of y; and yx, i # k,is zero,)
Hence the computation of the principal components amounts to transforming a o
ordinate system that consists of axes that may not be mutually perpendicular to 3
new coordinate system with mutually perpendicular axes. The new coordinate sys-
tem, the principal components, represents the original variables in a more ordered
and convenient way. An orthogonal coordinate system makes it possible to eas-
ily use projections to derive further information about the relationships between
variables. For details, refer to the following references:

REFERENCES

Johnson, Richard A., and Dean W. Wichern. Applied Multivariate Statisical Anal-
vsis, 5th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Jolliffe, I. T. Principal Component Analysis. New York: Springer-Verlag, 1986.

Wickens, Thomas D. The Geometry of Multivariate Statistics. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1995.

For an interesting application to trade routes in geography, see Philip D. Straf-
fin, “Linear Algebra in Geography: Eigenvectors of Networks,” Mathematics Mag-
azine, vol. 53, no. 5, Nov. 1980, pp. 269-276.

B Searching with Google: Using the Dominant Eigenvalue

In Section 1.2, after Example 6, we introduced the connectivity matrix A used
by the software that drives Google’s search engine. Matrix A has entries that are
either O or 1, with a;; = 1 if website j links to website i; otherwise, a;; =0.

A company with seven employees encourages the use of websites for a variety of
business reasons. Each employee has a website, and certain employees include
links to coworkers’ sites. For this small company, their connectivity matrix is &
follows:

E, E; E; Ey E; E¢ E;

E,| O 1 0 1 1 0O O

E, | 1 0 1 1 0 1 0

A= E; | 1 0 0 0 0 0 1
Es/ 0 O 1 0 1 1 0

Es | 1 1 0 0 0 1 0

Es| O 1 1 1 0 0 1

E;] 1 0 0 0 0 0 1




e

8.3  Dominant Eigenvalue and Principal Component Analysis 513

Here, we have assigned the names E;, k = 1,2,....7 to designate the employ-
ees. We see from the column labeled Ej that this employee links to the sites of
coworkers E;, E4, and Eg,. [ |

Upon inspecting the connectivity matrix in Example 10, we might try to assign
a rank to an employee website by merely counting the number of sites that are
linked to it. But this strategy does not take into account the rank of the websites
that link to a given site.

There are many applications that use the ranking of objects, teams, or people
in associated order of importance. One approach to the ranking strategy is to
create a connectivity matrix and compute its dominant eigenvalue and associated
eigenvector. For a wide class of such problems, the entries of the eigenvector can
be taken to be all positive and scaled so that the sum of their squares is 1. In
such cases, if the kth entry is largest, then the kth item that is being ranked is
considered the most important; that is, it has the highest rank. The other items are
ranked according to the size of the corresponding entry of the eigenvector.

For the connectivity matrix in Example 10, an eigenvector associated with the
dominant eigenvalue is

[0.4261 7
0.4746
0.2137
v= 0.3596
0.4416
0.4214
| 0.2137

It follows that max{vy, vy, ..., v7} = 0.4746; hence employee number 2 has the
highest-ranked website, followed by that of number 5, and then number 1. Notice
that the site for employee 6 was referenced more times than that of employee 1 or
employee 5, but is considered lower in rank. |

In carrying out a Google search, the ranking of websites is a salient feature that
determines the order of the sites returned to a query. The strategy for ranking uses
the basic idea that the rank of a site is higher if other highly ranked sites link to it.
In order to implement this strategy for the huge connectivity matrix that is a part
of Google’s ranking mechanism, a variant of the dominant eigenvalue/eigenvector
idea of Example 10 is used. In their algorithm the Google team determines the
rank of a site so that it is proportional to the sum of the ranks of all sites that link
to it. This approach generates a large eigenvalue/eigenvector problem that uses the
connectivity matrix in a more general fashion than that illustrated in Example 11.

REFERENCES

Moler, Cleve. “The World’s Largest Matrix Computation: Google’s PageRank Is
an Eigenvector of a Matrix of Order 2.7 Billion.” MATLAB News and Notes,

October 2002, pp. 12-13.
Wilf, Herbert S. “Searching the Web with Eigenvectors.” The UMAP Journal,

23(2), 2002, pp. 101-103.
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Key Terms

Symmetric matrix
Orthonormal eigenvectors
Dominant eigenvalue
Iterative process

1-norm

Markov process

Power method

XN Exercises

1. Find the dominant eigenvalue of each of the following
matrices:

o

2. Find the dominant eigenvalue of each of the following
matrices:

(a) [

1
-2

4 2

3

i
]

(b)

(b)

W NN

—4

1
2
1
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Principal component analysis (PCA)
Multivariate data matrix

Descriptive statistics

Sample mean

Sample variance

Sample standard deviation
Covariance matrix

First principal componen
Second principal compopep
Total variance

Google

Connectivity matrix

2
=2
1

3. Find the 1-norm of each of the following matrices:

3 -5
(@) 2 2]
C 2 -1 1
4 -2 2
@11y o0 2
| -3 4 8

(b)

A W o

1

4
2
—4

1
5
—4

0
0
7

4. Find the 1-norm of each of the following matrices:

4 —1
@ | 0]
r 1 2 -3
4 1 2
© 13 4
2 -3 4

(b)

4
-3
2
1

-2
-2
3

0
3
=2

10.

11.

12.

13.

Explain why || A||; can be greater than 1 and the sequence
of vectors A¥x can still approach the zero vector.

Let X = [56 62 59 73 75]" be the weight i
ounces of scoops of birdseed obtained by the same per-
son using the same scoop. Find the sample mean, the
variation, and standard deviation of these data.

Let X = [5400 4900 6300 6700] be the esti
mates in dollars for the cost of replacing a roof on the
same home. Find the sample mean, the variation, and
standard deviation of these data.

For the five most populated cities in the United States in
2002, we have the following crime information: For vio-
lent offenses known to police per 100,000 residents, the
number of robberies appears in column 1 of the data ma-
trix X, and the number of aggravated assaults in column
2. (Values are rounded to the nearest whole number.)

337 425

449 847

X=|631 846

. 550 617

o 582 647
2

5. Determine a bound on the absolute value of the dominant
eigenvalue for each of the matrices in Exercise 1.

6. Determine a bound on the absolute value of the dominant
eigenvalue for each of the matrices in Exercise 2.

14.

Determine the vector of sample means and the covari-
ance matrix. (Data taken from TIME Almanac 2006, In-
formation Please LLC, Pearson Education, Boston, MA.)

For the five most populated cities in the United States
in 2002, we have the following crime information: For
property crimes known to police per 100,000 residents,
the number of burglaries appears in column 1 of the dat2
matrix X and the number of motor vehicle thefts in co-

umn 2. (Values are rounded to the nearest whole num-
ber.)

7. Prove that if A is symmetric, then ||Al[; = [|AT],. 372 334
8. Determine a matrix A for which [|All, = ||A”||,, but A 662 891
is not symmetric. X=] 89 859
1319 1173

9. Prove Theorem 8.4. 137 873
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Determine the vector of §ample means and the covari- 18. Let S, be a covariance matrix satisfying the hypotheses
e matrix. (Data taken from TIME Almanac 2006, In- of Theorem 8.6. To prove Theorem 8.7, proceed as fol-
?n,malion please LLC, Pearson Education, Boston, MA.) lows:
0 : : .
. for the data in Exercise 13, determine the first principal (a) Show that the trace of S, is the total variance. (See
g component. Section 1.3, Exercise 43, for the definition of trace.)
a in Exercise 14, determine the first principal .
, For the da[td " prifcip (b) Show that there exists an orthogonal matrix P such
component. ‘ N . , that P7 S, P = D, a diagonal matrix.
,In Section 5.3 we defined a positive definite matrix as a
' square symmetric matrix C such that y'Cy > 0 for ev- (c) Show that the trace of S, is equal to the trace of D.

¢ry nonzero Vector y in R". Prove that any eigenvalue of

apositive definite matrix is positive. (d) Complete the proof.

;?5_?:.;‘? D' * .
i 4.4 Differential Equations

A differential equation is an equation that involves an unknown function and its
derivatives. An important, simple example of a differential equation is

i(t)— ()
dtx =rx(1),

where r is a constant. The idea here is to find a function x(z) that will satisfy
the given differential equation. This differential equation is discussed further sub-
sequently. Differential equations occur often in all branches of science and en-
gineering; linear algebra is helpful in the formulation and solution of differential
equations. In this section we provide only a brief survey of the approach; books
on differential equations deal with the subject in much greater detail, and several
suggestions for further reading are given at the end of this chapter.

B Homogeneous Linear Systems
We consider the first-order homogeneous linear system of differential equations,

x1(t) = anx|(t) + apx(t) + - + apux,(t)
x5(t) = axx1 (1) + anxao(t) + -+ - + azxn(t)

(1)
X, (1) = anx1(t) + appx2(t) + -+ + apuxn(t),

where the g;; are known constants. We seek functions x, (1), x2(¢), . .., x,,(z) de-
fined and differentiable on the real line and satisfying (1).
We can write (1) in matrix form by letting

x1(1) ayp ap -+ Ay
x2(1) az; ax» -+ Ay
x(t) = : ’ d=| . : 2 &

X, (1) Qnl Qnp2 -+ Qg




