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Basic graph theory stuff

Formally, a graph is a pair G = (V,E), where

V is the vertex set.

E ⊂ V × V is the edge set.

We say that x ∼ y if (x, y) ∈ E.

We could also add edge weights, directions to the edges, and
there are generalizations of most of what follows. However, we

will assume that all graphs are simple, i.e. E is symmetric.
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Encoding a graph as a matrix

We want to start using matrices, so we take functions
f : V → R, if we agree to an enumeration of the vertex set, this
allows us to write these functions as vectors


1 f1
2 f2
3 f3
4 f4

 2

1

3

4

This will allow us to think of operators on these functions as
matrices.
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Encoding a graph as a matrix

The degree matrix D, where Dij = 0 if i 6= j and Djj = dj is
the degree of the jth vertex — the number of edges that j is on.


1 2 3 4

1 3 0 0 0
2 0 2 0 0
3 0 0 3 0
4 0 0 0 2

 2

1

3

4

The degree matrix is a diagonal matrix.
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Encoding a graph as a matrix

The adjacency matrix A where Aij = 1 ith and jth verteces are
connected.


1 2 3 4

1 0 1 1 1
2 1 0 1 0
3 1 1 0 1
4 1 0 1 0

 2

1

3

4

The adjacency matrix is symmetric and often sparse in practice.
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Encoding a graph as a matrix

The (non-normalized) Laplacian matrix is ∆ = D −A.


1 2 3 4

1 3 −1 −1 −1
2 −1 2 −1 0
3 −1 −1 3 −1
4 −1 0 −1 2

 2

1

3

4

Some literature refers to this as the negative of the Laplacian,
in our case, we take the negative because it is non-negative
definite, In particular all eigenvalues are between 0 and ∞ (with
zero included).
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Encoding a graph as a matrix

To normalized Laplacian L = D−1/2∆D−1/2, so the previous
matrix we were using becomes


1 2 3 4

1 1 −1/
√

6 −1/3 −1/
√

6
2 −1/

√
6 1 −1/

√
6 0

3 −1/3 −1/
√

6 1 −1/
√

6
4 −1/

√
6 0 −1/

√
6 1



i.e. Lxy =


1 if x = y,

− 1√
dxdy

x ∼ y

0 otherwise.
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Encoding a graph as a matrix

2

1

3

4

We can also look at delta as an linear operator acting on
functions f : V → R, given by

∆f(x) =
∑
x∼y

(f(x)− f(y))

or

Lf(x) =
1√
dx

∑
x∼y

(
f(x)√
dx
− f(y)√

dy

)
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Encoding a graph as a matrix

2

1

3

4

The matrix D−1/2LD1/2 = D−1∆ is conjugate to L, and
thinking of it as an operator is slightly nicer

d−1x

∑
x∼y

(f(x)− f(y))
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Spectral Theorem

The spectrum of a matrix is the set of eigenvalues, for the this
talk I will refer to the spectrum of a graph as the spectrum of
the Laplacian

Lf = λf

λ is an eigenvalue, f is an eigenfunction. The eigenspace of λ is
the set of eigenfunctions which satisfy the above equations. The
λ-eigenspace is a linear space. Note that because ∆ and L are
non-negative definite, we have a full set of non-negative real
eigenvalues.

The 0-eigenspace is the set of (globally) harmonic function.
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Spectral Theorem

Spectral Theorem If A is a real symmetric n× n-matrix,
then each eigenvalue is real, and there is an orthonormal basis
of Rn of eigenfunctions (eigenvectors) of A.

{ej}nj=1 is orthonormal if ej · ek = δjk =

{
0 if j 6= k

1 if j = k.
Further, If A is non-negative definite, that is

(Af) · f = fTAf ≥ 0, ∀f ∈ Rn

then all of the eigenvalues are non-negative.
∆ and L are both symmetric and non-negative definite.

D. J. Kelleher Spectral graph theory



Spectral Theorem

Spectral Theorem If A is a real symmetric n× n-matrix,
then each eigenvalue is real, and there is an orthonormal basis
of Rn of eigenfunctions (eigenvectors) of A.

{ej}nj=1 is orthonormal if ej · ek = δjk =

{
0 if j 6= k

1 if j = k.
Further, If A is non-negative definite, that is

(Af) · f = fTAf ≥ 0, ∀f ∈ Rn

then all of the eigenvalues are non-negative.
∆ and L are both symmetric and non-negative definite.

D. J. Kelleher Spectral graph theory



What the spectrum tells us

Question What kind of functions are harmonic?
Looking at

d−1x

∑
x∼y

(f(x)− f(y)) = 0

we quickly realize constants are harmonic (as in Rn).

... well, locally constant functions at least. i.e. f(x) = f(y) for
all x ∼ y.
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What the spectrum tells us: Connected components

Locally constant functions are functions which are constant on
the connected components of our graph G.

If we re-enumerate, then the Laplacian is a block diagonal
matrix:

L =


L1 0 . . . 0
0 L2 . . . 0
...

. . .
...

0 0 . . . Lk


where Li is the Laplacian matrix of the connected components
Gi of G.

In particular, the number of connected components of a graph
dimension of the 0-eigenvalue (multiplicity of 0 as an
eigenvalue).
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What the spectrum tells us: Bipartite graphs

We say that G = (V,E) is bipartite if V = V1 ∪ V2 (disjoint)
such that x ∼ y only if x ∈ V1 and y ∈ V2 or visa versa. Assume
G is bipartite.

•
•

•
•
•

•

Then 2 is an eigenvalue of the normalized Laplacian. The
converse holds true as well.
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What the spectrum tells us: Spanning trees

A graph is a tree if it contains no cycles. A subgraph of G is
called a spanning tree if it is a tree that contains all the verteces
of G.
These are the 8 spanning trees of the graphs we showed earlier.

•

•

•

• •

•

•

• •

•

•

• •

•

•

•

•

•

•

• •

•

•

• •

•

•

• •

•

•

•
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What the spectrum tells us: Spanning trees

Kirchhoff’s theorem If G is a connected simple graph, and ∆
is the non-normalized Laplacian G, and λ1, . . . , λn−1 are the
non-zero eigenvalues of ∆, then the number of spanning trees of
G is given by

1

n
λ1 · · ·λn−1.
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Fractals

To get a Laplacian on a finitely ramified fractal, we take a set of
approximating graphs Gm, take their non-normalized
Laplacians ∆m, then we take a scaled limit, so in the case of
Siepriński gasket

∆f(x) =
3

2
lim

m→∞
5m∆mf(x).

Note that points in the graph are being identified with points in
the fractal.
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Fractals

So graph approximations allow us to approximate the Laplacian
on the limiting space, this gives us valuable insights into things
like

Spectral dimension

Random walks

Heat kernels

And in special cases like with the Sierpinski gasket, this
formulation allows us to say things about the spectrum and
eigenfunctions of the limit Laplacian.

D. J. Kelleher Spectral graph theory



The hexacarpet

Last semester, Sasha, Hugo, Ryan, Aaron, Matt and D started
looking at a fractal that comes from barycentric subdivisions of
a triangle. D. J. Kelleher Spectral graph theory



This is what the 4th level approximation looks like. (thanks to
Hugo Panzo)
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Eigenfunction coordinates

If we take the two (preferably linearly independent)
eigenfunctions φ1 and φ2 of your Laplacian, and graph the set
of points (φ1(a), φ2(a)) for a ∈ V in euclidean space, you get
something like the above picture. (thanks to Matt Begue)
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(a) (ϕ2, ϕ3) (b) (ϕ2, ϕ4) (c) (ϕ2, ϕ5)

(d) (ϕ2, ϕ6) (e) (ϕ3, ϕ4) (f) (ϕ3, ϕ5)

(g) (ϕ3, ϕ6) (h) (ϕ4, ϕ5) (i) (ϕ4, ϕ6)

Figure 6.1. Two-dimensional eigenfunction coordinateseigfpics

12
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(a) (ϕ2, ϕ3, ϕ4) (b) (ϕ2, ϕ3, ϕ5) (c) (ϕ2, ϕ3, ϕ6)

(d) (ϕ2, ϕ3, ϕ7) (e) (ϕ2, ϕ4, ϕ5) (f) (ϕ2, ϕ4, ϕ6)

(g) (ϕ2, ϕ5, ϕ6) (h) (ϕ3, ϕ5, ϕ6) (i) (ϕ4, ϕ5, ϕ6)

Figure 6.2. Three-dimensional eigenfunction coordinates3Deigfpics

13
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Eigenfunction coordinates

Over the summer the REU students Diwakar Raisingh, Gabriel
Khan, as well as Matt Beque and DK started to consider the
3-simplex version of this fractal.
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Eigenfunction coordinates
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Figure: First and second level graph approximations to the
3-barycentric sponge.
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Eigenfunction Video
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eigf234movie.mp4
Media File (video/mp4)



Eigenfunction Pictures
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Harmonic Extension

1

0 0y

x x

Harmonic extension / Dirichlet Problem Say we know a
function f on V0 ⊂ V (Filled dots above), we want to extend to
a function f̃ on V with

∆f(p) = 0, ∀ p /∈ V0.

We call V0 the boundary, and f̃ a harmonic Extension of f .
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Harmonic Extension

1

0 0y

x x

Let’s try!

0 = 2(y − 0) + 2(y − x) = 4y − 2x

So
y = x/2
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Harmonic Extension

1

0 0
x/2

x x

Let’s try!

0 = (x− 0) + (x− x/2) + (x− x) + (x− 1) =
5

2
x− 1

So

x =
2

5
, and y =

1

5

D. J. Kelleher Spectral graph theory



Harmonic Extension

1

0 0
x/2

x x

Let’s try!

0 = (x− 0) + (x− x/2) + (x− x) + (x− 1) =
5

2
x− 1

So

x =
2

5
, and y =

1

5

D. J. Kelleher Spectral graph theory
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Harmonic Extension

a

b b
a+2b+2c

5

2a+b+2c
5

2a+2b+c
5

We’ve done more Harmonic extension is linear, and applying
symmetries of the graph, we can compute the extension of any
function.
Even more than that, if we iterate this process, we can compute
harmonic extensions of all approximating graphs to the
Sierpinski Gasket, and then extend to the entire space.
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Harmonic Coordinates

Similarly to the eigenvalue coordinates, take two harmonic
functions with specific boundary values, f1 and f2 and plot the
points {(f̃1(p), f̃2(p)) | p ∈ Vn} in R2. (Picture by Jason Marsh)
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What about science?
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A worm-brain idea

Following the cue of a scientist Dmitri Chklovskii, part of the
REU summer 2011 was also to examine the brain of
Caenorhabditis elegans (C. Elegans).

Chklovskii formed a Laplacian matrix of the graph representing
279-neuron brain. Naturally, Tyler Reese, Dylan Yott, Antoni
Brzoska, and DK asked the question... “is it a fractal.”
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C. Elegans eigenfunction coordinate representation, thanks to
Dylan, Tyler, Toni
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It’s doesn’t look very fractal.
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We also compared the spectrum of this graph looking at

Spectral Gaps

Eigenvalue counting functions (Weyl ratios)

Small world properties

Localization of eigenfunctions

Comparing this to

random graphs

random trees

fractals

rewired fractals

None of which proved to be that satisfying of a model.
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Places to find out more:

Fan Chung’s website: math.ucsd.edu/∼fan

Chklovskii: neurop-
tikon.org/projects/display/chklovskiilab/Publications

DK’s Page: math.uconn.edu/∼kelleher
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Thanks!

Hexacarpet: Matt Begue, Hugo Panzo, Aaron Nelson,
Ryan Pellico

UConn Fractals REU 2011

Barycentric sponge: Gabriel Khan and Diwakar Raisingh

Worm-Brain Stuff: Dylan Yott, Tyler Reese and Antoni
Brzoska

Pillow harmonic coordinates: Jason Marsh

Data and code: Dmitri Chklovskii

Research supported in part by NSF grant DMS-0505622.

Special thanks: Sasha Teplyaev
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